Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Jennifer Dionne on Nanotechnology at Stanford

1,657 views

Published on

Jennifer Dionne on Stanford's Nanotechnology, presented at a LASER http://www.scaruffi.com/leonardo

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

Jennifer Dionne on Nanotechnology at Stanford

  1. 1. Lights, Nano, Action! Nano-optics for efficient solar cells, cancer treatments, and invisibility cloaksJen DionneStanford University
  2. 2. The Dionne Group @ Stanford: Understanding and controlling molecular and nanoscale systems using light.• Can low-energy photons be efficiently harvested in solar cells?• Can small molecules be optically trapped and manipulated?• Can the structure of individual chiral proteins be optically determined?• Can objects be made invisible? Though these questions are seemingly diverse, addressing them requires newtechniques to control the interaction light with matter,
  3. 3. What I wanted to be when I grew up:
  4. 4. What I wanted to be when I grew up: 1. A skating magician
  5. 5. What I wanted to be when I grew up: 1. A skating magician 2. A Hollywood star
  6. 6. What I wanted to be when I grew up: 1. A skating magician 2. A Hollywood star3. A paranormal researcher
  7. 7. 1 μm=1000 nm Visible light: 400-700 nm
  8. 8. Compared to bulk materials, nanomaterials have very different properties Bulk silver Silver nanoparticles (~10-100 nm diameter)
  9. 9. Brian Baum, Dionne group @ Stanford(cover of MRS Bulletin, August 2012)
  10. 10. Jon Scholl, Dionne group @ Stanford
  11. 11. Kate Nichols, TED & UC Berkeley katenicholsstudio.com Cover of Nature, March 2012
  12. 12. Compared to bulk materials, nanomaterials have very different properties 2 nmCdS (‘cadmium yellow’) CdS nanocrystal
  13. 13. http://personal.ee.surrey.ac.uk/Personal/D.Cox/page2/files/page2-1025-full.htmlhttp://www.youtube.com/watch?v=CApUXcPKX90&feature=player_embedded
  14. 14. The Impact of Nano Weight: 0.5g (0.001 lbs) 2010 Cost: $100 - $150 (32 GB) Size: 11mm x 15mm x 1mm (size of a dime) 1980(20 GB) 1 TB hard Baby grand Ford F-150 drive (~3 lbs) piano (~600 lbs) (~4500 lbs)
  15. 15. The Impact of Nano Weight: 0.5g (0.001 lbs) 2010 Cost: $100 - $150 (32 GB) Size: 11mm x 15mm x 1mm (size of a dime) 1980(20 GB) Ford F-150 McLauren F1 Paul Allen’s yacht (~$30,000) (~$970,000) (~$100 million)
  16. 16. The Impact of Nano Weight: 0.5g (0.001 lbs) 2010 Cost: $100 - $150 (32 GB) Size: 11mm x 15mm x 1mm (size of a dime) Weight: 2,000,000 g (4400lbs) 1980 Cost: $648,000 - $1,137,600(20 GB) Size: 70’’ x 44’’ x 32’’ (for each 2.5 GB cabinet)
  17. 17. 1 μm1947: the first transistor Today: Intel quad core i7 processor (~8 billion transistors)
  18. 18. Tomorrow: Chip-sized supercomputers with optical computing IBM’s CMOS Integrated Silicon Nanophotonics Chip
  19. 19. William Adams and Richard Day – the first solar cell (Se, 1876) (below: The first solar powered battery at Bell labs, 1954)
  20. 20. Nanomaterials enable more light absorption in solar cells • Sunlight outside of the visible frequency range is Solar cell usually poorly absorbed by solar cells 30-50% of sun’s energy cannot be absorbed5 % Ultraviolet 43 % Visible 52 % Infrared
  21. 21. Nanomaterials enable more light absorption in solar cells Solar cell Solar cell Insulator Upconverter 30-50% of sun’s energy Utilize low-energy cannot be absorbed transmitted photons5 % Ultraviolet 43 % Visible 52 % Infrared
  22. 22. Cell efficiency (%) With upconverter 44 30 Solar cell 1.0 1.5 2.0 2.5 Solar Cell bandgap (eV)
  23. 23. Cancer therapy with nanoparticles Y. Xia, Acc. Chem. Res 44 (2011)
  24. 24. Cancer therapy with nanoparticles Atwater, “The Power of Plasmonics,” Scientific American
  25. 25. Cloaks of Invisibility H.G. Wells (1897) nhuman=nair
  26. 26. Cloaks of Invisibility No object Object, no cloak Object & cloak source source source cloak object object observer observer observer Schurig, Pendry, Smith (2006)
  27. 27. Photorealistic images of un-natural refractive indices Adopted from Dolling,n=1.3 Optics Express 14 (2006)
  28. 28. Photorealistic images of un-natural refractive indicesn=1
  29. 29. Photorealistic images of un-natural refractive indicesn=0.01
  30. 30. Photorealistic images of un-natural refractive indicesn=-1.3
  31. 31. Towards n=0 with ‘artificial’ atoms & molecules 25 nm 1.5 Refractive Index 1 0.5 0 500 750 1000 Wavelength
  32. 32. If we wish to make a new world…n=-0.41 …we have the material ready. ~R. Quillen nano Jen Dionne http://dionne.stanford.edu jdionne@stanford.edu
  33. 33. Photorealistic images of un-natural refractive indicesn=0.5
  34. 34. Photorealistic images of un-natural refractive indicesn=0.01
  35. 35. Photorealistic images of un-natural refractive indicesn=-1

×