Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins

1,987 views

Published on

These slides are from 3DSIG 2014, presented on July 11.

I describe our investigation of internal symmetry in protein structures. This is quite common (24% of domains), and has many implications for function, folding, and evolution.

I introduce the CE-Symm method, described in

Myers-Turnbull, D., Bliven, S. E., Rose, P. W., Aziz, Z. K., Youkharibache, P., Bourne, P. E., & Prlić, A. (2014). Systematic Detection of Internal Symmetry in Proteins Using CE-Symm. Journal of Molecular Biology, 426(11), 2255–2268. doi:10.1016/j.jmb.2014.03.010

I discuss the results from running CE-Symm across the PDB, as well as some particularly compelling examples.

See also my poster by the same title for more details.

Published in: Science, Technology
  • Be the first to comment

3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins

  1. 1. Spencer Bliven July 11, 2014 3DSIG 2014 Myers-Turnbull, D., Bliven, S. E., Rose, P. W., Aziz, Z. K., Youkharibache, P., Bourne, P. E., & Prlić, A. (2014). Systematic Detection of Internal Symmetry in Proteins Using CE- Symm. Journal of Molecular Biology, 426(11), 2255–2268. PMID 24681267
  2. 2. Hemoglobin [4HHB] C2 GTP Cyclohydrolase I [1A8R] D5 Rhinovirus 2 [3DPR] Icosahedral AmtB Ammonia Channel [1U7G] C3
  3. 3. Ferredoxin-like [d2j5aa1] C2 Beta-Propeller [d1u6dx_] C6 Beta-trefoil [3JUT] C3 TIM barrel [1TIM] C8 Key: Crystallographic/NCS axis Pseudosymmetry axis
  4. 4. !  Function !  Allosteric regulation/cooperativity !  Bind ligands symmetrically (e.g. metals, palindromic DNA, channels) TATA Binding Protein [1TGH] Monod, J., Wyman, J., & Changeux, J.-P. (1965). J Mol Biol, 12, 88–118.
  5. 5. !  Function !  Allosteric regulation/cooperativity !  Bind ligands symmetrically (e.g. metals, palindromic DNA, channels) !  Folding !  Prevent infinite assembly !  Subunits fold quasi- independently TATA Binding Protein [1TGH] Monod, J., Wyman, J., & Changeux, J.-P. (1965). J Mol Biol, 12, 88–118. Wolynes, P. G. (1996). PNAS, 93(25), 14249–14255. Crystal of Squalene synthase [3WCG]
  6. 6. !  Evolution !  Identify duplications & fusions !  Many examples of homologous quaternary symmetric/ internally symmetric proteins !  Tradeoff between monomer & oligomer Lee and Blaber. PNAS (2011) vol. 108 (1) pp. 126-30
  7. 7. E. Coli DNA polymerase III beta subunit [1mmi] !  2 chains (C2 crystal axis) Human proliferating cell nuclear antigen [1VYM] !  3 chains (C3 crystal axis)
  8. 8. E. Coli DNA polymerase III beta subunit [1mmi] !  2 chains !  6 domains (pseudo C6) Human proliferating cell nuclear antigen [1VYM] !  3 chains !  6 domains (pseudo C6)
  9. 9. !  2-3 chains !  6 domains !  12 structural repeats (pseudo D6) Ancient 12-mer? Ancient 6-mer Bacterial DimerEukaryotic/Archaeal/ Viral Trimer Kelman, Z., & O'Donnell, M. (1995). Nucleic Acids Research, 23(18), 3613–3620. Neuwald, A. F., & Poleksic, A. (2000). Nucleic Acids Research, 28(18), 3570–3580.
  10. 10. !  Extends Combinatorial Extension (CE) algorithm for structural alignment !  Web server: source.rcsb.org/ jfatcatserver/symmetry.jsp !  Download & Source code: github.com/rcsb/symmetry (LGPL) Shindyalov, I. N., & Bourne, P. E. (1998). Protein Engineering, 11(9), 739–747. Jia, Y., Dewey, T. G., Shindyalov, I. N., & Bourne, P. E. (2004). J Comput Biol, 11(5), 787–799.
  11. 11. Fibroblast Growth Factor [3JUT] 120° 120° Myers-Turnbull, D., Bliven, S. E., Rose, P. W., Aziz, Z. K., Youkharibache, P., Bourne, P. E., & Prlić, A. (2014). Journal of Molecular Biology, 426(11), 2255–2268.
  12. 12. Fibroblast Growth Factor [3JUT] 120° 120° Myers-Turnbull, D., Bliven, S. E., Rose, P. W., Aziz, Z. K., Youkharibache, P., Bourne, P. E., & Prlić, A. (2014). Journal of Molecular Biology, 426(11), 2255–2268.
  13. 13. !  1007 structures from SCOP superfamilies !  Manually curated !  Excludes small proteins (<4 SSEs) !  24% of superfamilies have internal symmetry or large structural repeats Order Superfamilies % Asymmetric 766 76.10% Rotational 2 166 16.5% 3 10 1.0% 4 2 0.2% 5 3 0.3% 6 9 0.9% 7 9 0.9% 8 21 2.1% Dihedral 2 2 0.2% 4 1 0.1% Helical 2 9 0.9% 3 2 0.2% Non-integral 2 0.2% Superhelical 2 0.2% Translational 3 0.3%
  14. 14. !  AUC = .95 !  86% True Positive Rate !  3.3% False Positive Rate SymD: Kim, C., Basner, J., & Lee, B. (2010). BMC Bioinformatics, 11, 303.
  15. 15. !  All domains from SCOPe 2.03 !  Interactive results: source.rcsb.org/jfatcatserver/scopResults.jsp !  Underestimate based on conservative thresholds SCOP Class Superfamilies % Symmetric α 507 18.5% β 354 24.6% α/β 244 16.8% α+β 551 14.3% Multi-domain 66 4.5% Membrane 109 23.8% Overall 1831 18.0%
  16. 16. !  PTS sorbitol transporter subunit IIA !  Novel fold !  Solved by the Protein Structure Initiative !  Structural alignment reveals a conserved sequence motif between halves [2F9H]
  17. 17. !  18-24% of domains have internal symmetry !  Symmetry gives clues about duplication events !  Symmetry is deeply tied to protein function !  CE-Symm can accurately detect internal symmetry d1su3a2 D1pt2a_ d1c5ka1 d1k3ia3 d1h9ya2
  18. 18. !  UC San Diego/RCSB !  Douglas Myers-Turnbull !  Andreas Prlić !  Peter Rose !  Zaid Aziz !  Milton Saier !  RCSB & Bourne Lab members !  NIH !  Philip Bourne !  Philippe Youkharibache !  David Landsman !  Paul Scherrer Institute !  Guido Capitani & Lab members Resources: !  source.rcsb.org/jfatcatserver/ symmetry.jsp !  github.com/rcsb/symmetry !  Poster 25 !  www.slideshare.net/sbliven !  Funding: NSF, NIH, DOE, Open Science Grid
  19. 19. Glyoxalase I from Clostridium acetobutylicum [3HDP] (Nickel; Dimer) Glyoxalase I from E. coli [1F9Z] (Nickel; Dimer) 1,2-dihydroxy- naphthalene dioxygenase from Pseudomonas sp. strain C18 [2EHZ] (Iron; Octamer)
  20. 20. Glyoxalase I from Clostridium acetobutylicum [3HDP] (Nickel; Dimer) Glyoxalase I from E. coli [1F9Z] (Nickel; Dimer) 1,2-dihydroxy- naphthalene dioxygenase from Pseudomonas sp. strain C18 [2EHZ] (Iron; Octamer)
  21. 21. !  racemases and epimerases are enriched
  22. 22. 0 1 2 3 4 0.00 0.25 0.50 0.75 TM−Score Density Asymmetric Symmetric
  23. 23. This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

×