Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Sustainable Strawberry Production in the Absence of Soil Fumigation

1,441 views

Published on

2014 National Sustainable Strawberry Initiative Project Leader Meeting

Published in: Science, Technology, Business
  • Be the first to comment

  • Be the first to like this

Sustainable Strawberry Production in the Absence of Soil Fumigation

  1. 1. Funding provided by the National Strawberry Sustainability Initiative
  2. 2. Evalua&on  of  Compost  on  Strawberry  Root   Health  and  Plant  Growth   Four  commercial  composts   Five  field  sites   Disease  suppression   Root  health   Plant  produc7vity   Dr.  Tom  Gordon  and     Margaret  Lloyd  
  3. 3. Flat fumigation Bed fumigation 1. Change in fumigation materials: methyl bromide phaseout 2. Change in fumigation methods from flat to bed fumigation
  4. 4. 1. Compost Characterization 2. Plant Productivity 3. Root Development 4. Disease Suppression Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Evalua&on  of  Compost  on  Strawberry   Root  Health  and  Plant  Growth  
  5. 5. Material  Name   Descrip7on  of  source  material   1   Yard  Trimmings   Compost   100%  Yard  trimmings     2   Manure  Compost   20%  steer  manure   30-­‐40%  green  waste  fines     35-­‐45%  mix  of:  Waste  +  straw  bedding  from  stalls   <5%  vegetable  waste   3   Vermicompost   100%  Composted  dairy  manure  +  rice  hull  bedding,  fed  to  worms   4   Mushroom  Compost     Spent  mushroom  compost  from  buPon  mushrooms  composted  horse  manure  +   straw   Amended  with  gypsum  and  peat  post-­‐decomposi7on   The  Composts   Yard  trimming   Manure   Vermicompost   Mushroom   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  6. 6. PHYSIOCHEMICAL   Mushroom  Compost     Manure  Compost   Yard  Trimmings  Compost   Vermicompost   Nitrate-­‐N*    (ppm)   120   234   6.6   502   pH   7.3   8.1   7.6   7   EC  (dS/m)   4.8   28   4.5   7.1   C:N   14:01   12:01   17:01   13:01   Cost   $3-­‐5/T   $5/T   $21/T   $500/yd   Applica7on  method   Broadcast   Broadcast   Broadcast   Apply  to  rootzone   OMRI  Approved   ✔ ✔ ✔ ✔ Compost  Characteriza&on:  Composi&on   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  7. 7. Compost  Characteriza&on   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Microbial Activity Total fungal and bacterial populations 0   0.05   0.1   0.15   0.2   0.25   0.3   0.35   Yard  trimmings   Mushroom   Vermcompost   Manure   FDA  hydrolysis  (ugFDA/gDw*min)   Microbial activity of each compost
  8. 8. Central  Coast,  CA  (Santa  Cruz  &  Monterey  Coun7es)   4.  Methyl  bromide  (MB)-­‐  Fumigated,  conven7onal  field   5.  Organic  Commercial  Field   North  Coast,  CA  (San  Mateo  County)   3.  Organic  Commercial  Field   Central  Valley  (Sacramento  County)   1.  Fumigated  (non-­‐MB),  conven7onal  field   2.  Fumigated  (non-­‐MB),  conven7onal  field   Field  Sites   1   2   3   4   5   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Central Valley Central Coast ∨ ∨ North Coast
  9. 9. -­‐0.05   0   0.05   0.1   0.15   0.2   0.25   0.3   0.35   Yard  Trimmings   Mushroom   Manure   Vermicompost     Control   FDA  hydrolysis  (ug  FDA/gDw*min)   MB,  Central  Coast   Conv,  Central  Valley   Org,  Central  Coast   Org,  North  Coast   Conv,  Central  Valley   Compost  Characteriza&on   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion High Intermediate Low Microbial  ac&vity  of  field  soil  2  weeks  aSer  compost  incorpora&on   1.  Compost significantly increases microbial activity in field soil 2.  Regardless of the native soil, the effect each compost bestows on microbial activity is similar
  10. 10. Compost  Characteriza&on   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Microbial  ac&vity  of  field  soil  10  weeks  aSer  compost  incorpora&on   0   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09   0.1   Yard  Trimmings   Spent  Mushroom   Manure   Vermicompost   Control   FDA  hydrolysis  (ug  FDA/gDw*min)   Conv,  Central  Valley   MB,  Central  Coast   Org,  North  Coast   1. Overall microbial activity is lower 2. Differences between composts is less
  11. 11. Day  neutral   Short  day   Cul7var  name   Albion   Chandler   Seasonal  growth  curve   Slow,  steady  produc1on  for   6+  months   Peaks  and  troughs  in   produc1vity   Total  fruit  produc7on   (per  season)   Significantly  higher   Significantly  lower   Root  development  and   canopy  growth   Slower,  less  vigorous  ini1ally   Strong  early  growth,  large   canopy   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Strawberry Type and Cultivar
  12. 12. Plant  Produc&vity   1.  Plants grown in methyl bromide fumigated field are significantly larger than those in organic fields. 2.  In organic fields, general trend shows greater growth in mushroom and vermicomposts. Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  13. 13. Plant  Produc&vity   1. Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion 1.  Plant growth on the coast is significantly greater than inland in the central valley.
  14. 14. Plant  Produc&vity   1. Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion 1.  Plant growth on the coast is significantly more than inland in the central valley. 2.  Yard trimming and manure compost result is slightly less growth, whereas vermicompost and mushroom tend to have slightly greater growth, along with control +N
  15. 15. ORGANIC FIELD, Central Coast Effect of compost on strawberry yield Plant  Produc&vity   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  16. 16. ORGANIC FIELD, Central Coast Effect of compost on strawberry yield Plant  Produc&vity   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion YIELD CURVE
  17. 17. Weekly  yield  of  two  strawberry  cul7vars  grown  in  different  composts   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Effect of compost on strawberry yield  Plant  Produc&vity   ORGANIC FIELD, North Coast
  18. 18. Effect of compost on strawberry yield  Plant  Produc&vity  
  19. 19.  Root  development   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Strawberry crown and canopy Drip line
  20. 20.  Root  development   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  21. 21. METHODS   • Albion   • Grown  in  10%  compost   • 3  weeks   • Greenhouse   • Ver1cillium  dahliae   microsclero7a  infested  sand   inoculum   What  is  the  effect  of  compost  on  root  infec&ons  by  Ver$cillium  dahliae?   Total root length analysis 3 week growth period V. dahliae root assay Compost  Amendment   Field  Soil   V.  dahliae   inoculum   0%   100%   ✔   10%  Steer  manure   90%   ✔   10%  Mushroom   90%   ✔   10%  Vermicompost   90%   ✔   10%  Yard  trimming   90%   ✔    Effect  of  compost  on  suppression  of  plant  pathogens   with strawberries Treatment pots planted with strawberries Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  22. 22. 3 weeks V. dahliae root assaysTotal root length is analyzed Treatment pots planted with strawberries Effect  of  compost  on  suppression  of  plant  pathogens   Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  23. 23. Control (-) P.ultimum Control (+) P.ultimum Mushroom compost (+) P.ultimum Vermicompost (+) P.ultimum Manure compost (+) P.ultimum Yard trimmings compost (+) P.ultimum Pythium ultimum surrogate assay for disease suppression • 10% compost + Sunshine potting mix • Soil mix is inoculated with P. ultimum. • After 5 days, 7 cucumber seeds are sown per pot
  24. 24. Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Summary   Root Development: • Vermicompost led to significantly more root development in field and potted trials Yield • Control + Nitrogen has the highest yield at this point • Vermicompost and mushroom compost are also showing greater productivity early in the season Root infection • Manure compost is showing suppression of both Pythium ultimum and Verticillium dahliae • Vermicompost led to reduced frequency of infection from V. dahliae All composts significantly increased microbial activity All composts led to greater root development in the field All composts reduce infection by Pythium ultimum
  25. 25. WEBSITE AND BLOG Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  26. 26. Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion
  27. 27. This could not have been possible with out the following support Introduction Compost characterization Plant productivity Root Development Disease suppression Conclusion Funding provided by UC Davis Dr. Tom Gordon, advisor Dr. Dan Kluepfel, USDA, thesis committee Dr. Mike Davis, thesis committee Sharon Kirkpatrick, Gordon lab manager Team Green: Emmi Koivunen, lab technician Lola Quasebarth, lab technician Peter Henry, lab technician Ana Maria Pastrana Leon, visiting scholar Athina Ruangkanit, lab intern North Coast Field Trial Matt Quinn, North Coast field harvester Tim Campion , grower collaborator Jim Cochrane, grower collaborator Central Coast Don Yoshimura, grower collaborator Gina Colfer, Earthbound Asso. collaborator Ian Greene, grower collaborator Jack Anderson, field support Sacramento Field Trials Chuck Ingels, UCCE farm advisor Sacramento Co. Kyle Garrett, UCCE field assistant Luke, UCCE field assistant Anthony and Sidney Saetern, grower collaborator Lo Saetern, grower collaborator Compost Collaborators Tom Ford, Central Coast Compost Alex Sharpe, Z Best Jack Chambers, Sonoma Valley Worm Farm Greg Tuttle, Monterey Mushroom Margaret Lloyd mglloyd@ucdavis.edu
  28. 28. Funding provided by the National Strawberry Sustainability Initiative
  29. 29. Group  1   (smallest)   Group  2   Group  3   Group  4   (largest)   How  does  each  compost  influence  strawberry  root  growth?   How  does  strawberry  root  growth  differ  in  each  compost?   0   500   1000   1500   2000   2500   3000   1   2   3   4   Total  Root  Length  (cm)   Group  #   ALBION CROWNS AT PLANTING WHEN? 1.Crown size at planting 2. Roots at harvest –March 3. Roots mid-harvest (July) 4. Roots at end (Sept) HOW? Destructive sampling 3 plants per rep Hydropneumatic root elutriator + root scanner
  30. 30. CHANDLER CROWNS AT PLANTING
  31. 31. DEL REY CROWNS at PLANTING
  32. 32. 0 500 1000 1500 2000 2500 3000 3500 Totalrootlength Compost type Effect of Compost on Root Growth Total Root Length Root Infection Trial 1 (Rep1, 2, 3)
  33. 33. M. LLOYD AND THE QUESTIONNAIRES
  34. 34. The   industry-­‐wide   shij   in   strawberry   produc7on   from   tradi7onal   fumiga7on   methods   generates   a   tremendous   need   for   knowledge   transfer   and   grower   support.     Accordingly,  as  a  complement  to  the  biological  research,  we   are   conduc7ng   a   social   network   analysis   and   grower-­‐ iden7fied   needs   assessment,   to   iden7fy   pathways   of   knowledge   transfer   among   strawberry   growers   and   to   bePer  understand  grower  percep7ons  of  their  goals,  needs   and   management   styles   to   best   develop   MB-­‐alterna7ve   outreach.     Approach 1.  Establish # of growers in region (community profile) 2.  Reach growers (determine # that’s good enough) 1.  Phone 2.  Mail 3.  Meetings 4.  Individuals QUESTIONNAIRES
  35. 35. Microbial  Community  Analysis   Soil  samples  from  each  field   site   are   taken   for   DNA   extrac7on  four  7mes:     (1)  Plan7ng,     (2)  Harvest  (March),     (3)  Midharvest  (July)     (4)  End  of  harvest  (Sept)  
  36. 36. Does  field  soil  amended  with  compost  suppress  Ver$cillium  dahliae  microsclero&a   viability?   In   the   absence   of   a   plant   host,   biological   control   by   compost   could   be   affec7ng   microsclero7a  viability  through  mechanisms  of  fungistasis.  To  elucidate  the  role  of  the   amendment  on  microsclero7a  viability,  field  soil  is  amended  with  50%  compost,  spiked   with  V.  dahliae  microsclero7a  and  put  in  4”  pots  in  a  greenhouse  for  9  months.    Every   three  months,  soil  is  assayed  for  V.  dahliae  viability.     50% compost 50% field soil Sand inoculum (104 million/g sand) Assay every 3 months Greenhouse
  37. 37. Pythium  ul$mum  Surrogate  Assay   In  this  trial,    field  soil  is  taken  from  the  field  trial,  sieved  to  homogenize  par7cle  size  and  spiked  with  P.  ul1mum.  For  five   days,   this   mixture   is   maintained   in   the   growth   chamber   with   moisture   before   20   Cherry   Belle   radish   seeds   (P.ul1mum-­‐ suscep7ble)  are  sown  per  pot.  Ajer  14  days,  the  number  of  surviving  seedlings  is  counted  and  used  as  a  proxy  to  compare   disease  suppression  by  each  treatment.     Does  field  soil  amended  with  compost  suppress  pathogens?   METHODS   1.  Field  soil  from  trials   2.  Sieve     3.  Mix  with  P.  ul1mum   4.  Wait  5  days   5.  Sow  with  radish  or  cucumber   seeds   6.  Wait  14  days   7.  Count  surviving  seeds   4.  Effect  of  compost  on  suppression  of  plant  pathogens  

×