We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Arif Ansari, Professor at University of Southern California
Super Bowl Ad cost $7 million and each year a few Super Bowl ads go viral. The traditional A/B testing does not predict virality. Some highly shared ones reach over 60 million organic views, which can be more valuable than views on TV. Not only are these voluntary, but they are typically without distraction, and win viewer engagement in the form of likes, comments, or shares. A Super Bowl ad that wins 69 million views on YouTube (e.g., Alexa Mind Reader) costs less than 10 cents per quality view! However, the challenge is triggering virality. We developed a method to predict virality and engineer virality into Ads.
1. Prof. Gerard J. Tellis and co-authors recommended that advertisers use YouTube to tease, test, and tweak (TTT) their ads to maximize sharing and viewing. 2022 saw that maxim put into practice.
2. We developed viral Ads prediction using two scientific models:
a. Prof. Gerard Tellis et al.'s model for viral prediction
b. Deep Learning viral prediction using social media effect
3. The model was able to identify all the top 15 Viral Ads it performed better than the traditional agencies.
4. New proposed method is Tease, Test, Tweak, Target and Spots Ad.
Arif Ansari, Professor at University of Southern California
Super Bowl Ad cost $7 million and each year a few Super Bowl ads go viral. The traditional A/B testing does not predict virality. Some highly shared ones reach over 60 million organic views, which can be more valuable than views on TV. Not only are these voluntary, but they are typically without distraction, and win viewer engagement in the form of likes, comments, or shares. A Super Bowl ad that wins 69 million views on YouTube (e.g., Alexa Mind Reader) costs less than 10 cents per quality view! However, the challenge is triggering virality. We developed a method to predict virality and engineer virality into Ads.
1. Prof. Gerard J. Tellis and co-authors recommended that advertisers use YouTube to tease, test, and tweak (TTT) their ads to maximize sharing and viewing. 2022 saw that maxim put into practice.
2. We developed viral Ads prediction using two scientific models:
a. Prof. Gerard Tellis et al.'s model for viral prediction
b. Deep Learning viral prediction using social media effect
3. The model was able to identify all the top 15 Viral Ads it performed better than the traditional agencies.
4. New proposed method is Tease, Test, Tweak, Target and Spots Ad.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!