Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Wetland Ecosystem Service Protocol for Southeast Alaska by Dr. Paul Adamus


Published on

Wetland Functional Assessment Class, Haines AK. Southeast Alaska Watershed Coalition

Published in: Education, Technology
  • Login to see the comments

  • Be the first to like this

Wetland Ecosystem Service Protocol for Southeast Alaska by Dr. Paul Adamus

  1. 1. WESPAK‐SEWetland Ecosystem Services Protocol for Southeast Alaska Paul Adamus, Ph.D. Graduate Faculty, Water Resources Graduate Program and Marine Resource Management Program Oregon State University and Adamus Resource Assessment, Inc. May 2012 Juneau, AK © all rights reserved
  2. 2. Monday 8:30 Introductions. Course logistics. Brief history of wetland assessment Definitions: wetland functions, values, and “health” (condition) How WESPAK‐SE works10:15 BREAK Delimiting the assessment unit Fill out Office Form (OF) for wetland #1 (Blueberry Hill non‐tidal) Future: Internet portal for wetlands of Southeast Alaska11:45 LUNCH 1:15 Visit wetland #1 and apply WESPAK‐SE 4:30 endTuesday 8:30 Review scores from wetland #1 Lecture: Principles of Hydrologic Functioning & Value Lecture: Principles of Water Quality Functioning & Value10:15 BREAK Lecture:  Habitat Support – Models for Functions & Values Fill out Office Form (OF) for wetland #2 (Fish Creek tidal) 11:45 LUNCH 1:15 Visit wetland #2 and apply WESPAK‐SE 4:30 end
  3. 3. Wednesday8:30 Visit and assess wetland #3 (Vanderbilt non‐tidal) 11:45 LUNCH1:15 Go over Office Form (OF) for wetland #3 (Vanderbilt non‐tidal) Review scores from wetlands #2 and #32:30 BREAK Calculating ratios, debits, & credits – some options General discussion and feedback4:30 end
  4. 4. Wetland DeterminationWetland DelineationWetland ClassificationWetland CategorizationWetland AssessmentEcosystem Services
  5. 5. WESPAK‐SE  Origins1983. Federal Highway Wetland Evaluation Method (applied  nationally)1986.  Juneau Wetlands Study  Criteria  Management Plan1987. Wetland Evaluation Technique (WET)2001‐05.  Oregon Hydrogeomorphic (HGM) methods2009. Oregon Rapid Wetland Assessment Protocol (ORWAP)2010. Wetland Ecosystem Services Protocol for the U.S. (WESPUS)2011.  WESPAK‐SE Ongoing2012. Wetland Ecosystem Services Protocol for Alberta (WESPAB)2013. Nearshore Marine WESPUS for Puget Sound  (Adamus, Houghton, Simenstad, et al.)2013. Stream Functional Assessment &  Mitigation Crediting Protocol for Oregon (ESA Inc., Skidmore, Adamus, et al.)
  6. 6. United States Oregon Alaska southeast Alberta  south1983, 1987 2009 2011 2012
  7. 7. Which Wetlands Are The Most Important?1. What criteria should we use to tell? Health ?   Threat/ Risk ?   Rarity/ Loss Rate?    Sensitivity?  Ecosystem Services? 2. How much information should we require? Does knowing just a wetland’s type tell us enough? Is GIS compilation of existing spatial data enough? Are one‐time field observations enough? Are advanced methods of imagery interpretation enough? Is analysis of water quality, soils, plants, etc. necessary?
  8. 8. Wetland Attributes That Are Important to Assess• Risk to Wetland: • Stressors (Threats) • Sensitivity = Resistance & Resilience to stressors• Functions: what a wetland does naturally• Values (Benefits): Values of Functions (e.g., water storage flood protection) Opportunity to perform function (upslope) Significance of function when performed (downslope) Integrity (a.k.a. Ecological Condition, Health, Quality, Naturalness) Recreation, Education, Aesthetics Production of Commodities (timber, hay, fish, etc.) Ecosystem Services = Functions + their Values
  9. 9. Example of Output from a Function Assessment Method Function  Value  Function  Value  Time 1 Time 1 Time 2 Time 2Water Storage & Delay 0.2 0.8 0.2 0.9Sediment Stabilization &  0.6 0.6 0.7 0.6Phosphorus RetentionNitrogen Removal 0.9 0.5 0.9 0.5Thermoregulation 0.1 0.5 0.2 0.5Primary Production 0.7 0.7 0.6 0.7Resident Fish Habitat  0.3 0.4 0.4 0.4Anadromous Fish Habitat  0 0.6 0.5 0.6Invertebrate Habitat  0.6 0.1 0.7 0.1Amphibian & Turtle Habitat 0.6 0.2 0.5 0.2Breeding Waterbird Habitat 0.8 0.4 0.7 0.4Non‐breeding Waterbird Habitat 0.2 0.1 0.3 0.1Songbird Habitat  0.5 0.7 0.6 0.7Support of Characteristic Vegetation 0.7 0.7 0.8 0.7
  10. 10. Functions and Values should be assessed independently of each other. Level of FUNCTIONS Level of VALUES Action HIGH HIGH Avoid/ Preserve LOW HIGH Enhance/ Restore ? HIGH LOW Maintain ? LOW LOW Develop w. mitigation ?
  11. 11. Uses of OutputsPRIMARY: • Compare ecosystem services of different wetlands ad hoc and use as a basis for avoidance or compensation.• Identify wetland designs that may provide greatest levels of particular ecosystem services.• Identify ways to minimise impacts to functions of a wetland.SUPPORTING:• Prioritise all wetland sites in a watershed or region.• Monitor success of individual restoration projects.• Provide inputs to wetland economic models.
  12. 12. Variables  Indicators  < Models >   Attributes assessment method: Data form + Guidance document + Models/criteriamodels. Decision rules, criteria, or equationsby which information on variables is summarizedinto a score, qualitative rating, rank, index, or other representation of anattribute.Example of a Function Assessment Scoring ModelFish Habitat Suitability = Access x (WaterQuality + Cover + Temperature)
  13. 13. WESPAK Basic FeaturesIntended to get away from simplistic assumptions, e.g., bogs better than forested wetlands.Provides 0‐10 score for 16 wetland functions and their values.Recommended by the IRT.  Oregon version required by State of Oregon.  Long history.The only field method being calibrated specifically to Southeast Alaska. (tested on 40+ sites).Tidal & Non‐tidal Wetlands.  Office & Field components.Uses ~120 indicators, but many “skip to’s.”  Takes less than 3 hours per site.Quick to learn.  No specialized expertise required.  High repeatability is anticipated (in Oregon, only 5% variation in independent scores).Strongly rooted in scientific literature and peer review.Can be applied at multiple scales: Entire wetland:  prioritization for purchase or enhanced regulatory protection. Part of a wetland: road widening residential development
  14. 14. The Finer (but essential!) Points• The function scores are relative, not absolute.• No qualitative descriptors are associated with particular score intervals.• Summing or otherwise combining the function or value scores has no basis  in science.• Expect no site to rank high for all functions.
  15. 15. Steps for Using WESPAK-SE1. Go online and download the current version of: Excel spreadsheet PDF files for data forms OF, FieldF, and FieldS.Print the PDF files, not the Excel spreadsheet.2. Read and thoroughly understand the Manual.3. Fill out the CovPg and Office Form (OF)• Obtain and view topo map and aerial image• Draw boundaries of assessment area (AA) and contributing area (CA)• Obtain specific info from web sites and local sources4. Visit the wetland. Fill out 2 data forms -- FieldF and FieldS. Identify plants, texture the soils, observe hydrology indicators.5. Enter the data in Excel spreadsheet.6. Process and interpret the results.
  16. 16. Examples of Indicator Questions True‐False:Acidic Most pools within the AA are depressions in a peat layer of > 4 inch depth, or have 0Pools darkly-stained waters (brownish tannins), and/or a pH < 5.5. Nearby vegetation is mostly moss and/or evergreen shrubs. Choose the most applicable: N The cover of nitrogen-fixing plants (e.g., alder, sweetgale, legumes) in the AA or the percent of the Fixers AAs water edge occupied by those (whichever contains more) is: <1% or none 0 1-25% 0 >25% 0 Choose all applicable:Woody Diameter Mark all the types whose stems comprise >5% of the woody stems in the AA:Classes deciduous 1-4" diameter and >3 ft tall 0 evergreen 1-4" diameter and >3 ft tall 0 deciduous 4-9" diameter 0 evergreen 4-9" diameter 0 deciduous 9-21" diameter 0 evergreen 9-21" diameter 0
  17. 17. [spreadsheet]
  18. 18. Delimiting a Wetland’s Contributing Area
  19. 19. Delimiting the Assessment Units:View wetland maps at:
  20. 20. Delimiting the Assessment Area (AA)
  21. 21. Operating Principles for Delimiting Wetland Assessment UnitsDelimit units based on surface flow similarity (consider culverts, natural constrictions, above‐grade roads, etc. to be delimitors)In lakes, rivers, and estuaries, delimit units separated by a wide expanse of deepwater (>2m).  Don’t do this in shallow ponds (<20 acres)... assess the whole pond.Delimit separate units based on HGM class only if one of the HGM classes occupies >20%of the wetland.Don’t divide a wetland into assessment units based ONLY on: Property lines Fences Land cover or zoning designations Vegetation or Cowardin (NWI mapped polygon) types
  22. 22. F10. During most of the wettest time of a normal year, the percent of the surface water that is in or connected toOnsite Surface Water ditches, swales, or flowing channels that exit the AA, compared to surface water that is in isolated pools that doIsolation not connect annually to channels or swales (if any), is:(Wet Season) all (100%) located in channels, swales, or in other areas with a wet-season surface connection to channels or to a contiguous lake or estuary 75-99% in or connected to channels, swales, or contiguous lake/ estuary, 1-25% in isolated pools 50-75% in or connected to channels, swales, or contiguous lake/ estuary, 25-50% in isolated pools 25-50% in or connected to channels, swales, or contiguous lake/ estuary, 50-75% in isolated pools 1-25% in or connected to channels, swales, or contiguous lake/ estuary, 75-99% in isolated pools all located in isolated pools or a single isolated pond from which no surface water exits
  23. 23. F12. During most of the time surface water is present, its depth in most of the inundated part ofPredominant Depth the AA is:Class >6 ft deep 2-6 ft deep 1-2 ft deep 0.5 - 1 ft deep <0.5 ft deepF13. During most of the time when surface water is present (select one):Depth ClassDistribution One depth class (use the classes in F12) comprises >90% of the AA’s inundated area One depth class comprises >50% of the AAs inundated area Neither of above
  24. 24. F21. During peak annual flow, the surface water that flows through the AAs channel or floodplain:Throughflow encounters little or no vegetation, boulders, or other sources of friction.Complexity mostly encounters herbaceous vegetation that offers little resistance, and water follows a fairly straight path from entrance to exit (few internal channels, only slight meandering) mostly encounters herbaceous vegetation that offers little resistance and follows a fairly indirect path from entrance to exit (non-channelized flow or many internal channels, or very braided or tightly meandering) encounters measurable resistance from fairly-rigid vegetation (e.g., cattail, bulrush, woody plants) or channel-clogging debris, and follows a fairly straight path from entrance to exit. encounters measurable resistance from fairly-rigid vegetation (e.g., cattail, bulrush, woody species) or channel-clogging debris, and follows a fairly indirect path from entrance to exit.
  25. 25. Upland Edge Most of the edge between the wetland and upland is (select one):ShapeComplexity Linear: a significant proportion of the wetlands upland edge is straight, as in wetlands bounded by partly or wholly by dikes or roads Convoluted: Wetland perimeter is many times longer than maximum width of the wetland, with many alcoves and indentations ("fingers") Intermediate: Wetlands perimeter either (a) is only mildly convoluted, or (b) mixed -- contains about lengths of linear and convoluted segments.
  26. 26. F79. Along the AAs wetland-upland boundary and extending 100 ft uphill, the average slope of the land is mostly:Buffer Slope <1% (flat -- almost no noticeable slope, or there is no upland boundary) 2-5% 5-30% >30%F80 Within 10 ft of ponded surface water (if any) in early summer, the percent of the vegetated area (wetland or upland) thatEdge Slope has a gentle or moderate slope (less than 5% slope) is: >75% 50-75% 25-50% 1-25% <1%, (ponded surface water in early summer covers <1% of AA, or AA is tidal)
  27. 27. Indicators of HIGH water (= upper limit of Seasonally Inundated zone)Water marks on trees (moss); water‐stained leaves; algae amid grass stemsDrift lines of debris on ground or suspended in shrubs Scoured areas on the soil surfaceFresh deposits of water‐borne sedimentHeight of outlet or berm relative to current water levelAquatic bed plants without water beneathAirphoto sequenceIndicators of LOW water (= lower limit of Seasonally Inundated zone) (= upper limit of Permanently Inundated zone)Minimal vegetation (all Obligates).  No woody.TopographyAirphoto sequence
  28. 28. Size of Nearby “Natural Land Cover”
  29. 29. Important Fishery Subsistence Areas of Southeast Alaska
  30. 30. IN PROGRESS:  Southeast Alaska Online Wetlands Data Portal !1. User enters the latitude‐longitude, e.g., permit application.2. The portal will overlay maps needed to answer form OF questions, plus more!3. Will be completed in fall 2012, but already very functional.4. Will allow user to specify circle of any radius, and measure distances and area.5. No GIS skills needed.
  31. 31. encouraged! Let us know about other map data layersuseful to predicting wetland functions and natural resource conditions! We willtry to obtain and include them in the wetlands portal. Send suggestions to PaulAdamus:
  32. 32. Other Wetland Assessment Methods in Alaska (a few examples)1.  Models for Assessing Functions and Values of Juneau Wetlands (1987, 2007, 2010) 2.  HGM (hydrogeomorphic) methods: • Riverine and Slope River Proximal Wetlands in Coastal Southeast &  Southcentral Alaska • Flat Wetlands on Precipitation Driven and Discontinuous Permafrost in  Interior Alaska • Flat/Slope Wetland Complexes in the Cook Inlet Basin Ecoregion3. ADOT&PF Wetland Assessment Method    Montana   WET4. NatureServe Method  (Juneau)5.   Habitat Equivalency Analysis (HEA – Sitka airport project)
  33. 33. WET/ Juneau methods• categorical output only (High, Medium, Low, etc.)• outdated science • not calibrated outside of JuneauHGM (vs. WESPAK‐SE)HGM is an Approach (no national Method) • must classify wetland first. • must first develop separate method for each HGM type and region – this  requires intensive field measurements.   • does not score the relative value of any function . • assumption:  least‐altered wetlands are highest‐functioning.
  34. 34. “Highest Functioning” vs. “Least Altered” Standards
  35. 35. Why Should the Assessment of Wetland Functions and Condition be Standardized? • Few people are knowledgeable about all wetland functions. • Few people can instantly recall all indicators potentially applicable to a given  wetland function. • Different people implicitly give more weight to some indicators than others. • Any reduction in arbitrariness of assessments leads to increased public  confidence in the objectivity of the results. • “Paper trail” is helpful for legal reasons. The Trade‐off:  less flexibility to accomodate the quirks of a particular site
  36. 36. Structural Types of Rapid Assessment Methods• Simple Checklists• Contrasting Condition Checklists• Determinative Procedures.  scoring based on: Actual Reference Wetlands Virtual Reference Wetlands or Mechanistic Models
  37. 37. Example:  Indicators of  Nitrogen Removal Option 1:  Simple list of indicators • Duration and pattern of soil saturation • Soil organic content • Soil temperature
  38. 38. Example:  Indicators of  Nitrogen RemovalOption 2: Minimize guidance, maximize user flexibility This is the approach used in the Oregon HGM’s “Judgmental Method” and in  its method for assessing Values of the functions. 
  39. 39. Validation.  Test methods and models relative to a pre‐specified performance standard or objective.• repeatability.  The reproducibility or replicability of a method as demonstrated by the consistency (precision) of its results among independent users and across time. • sensitivity.  The ability to discriminate finely among alternative conditions or gradations of an attribute across a specified range of conditions, i.e., its responsiveness.• accuracy.  The degree to which something approaches reality.  “Reality” may be represented simply by independent judgments of experts, or by extensive and intensive robust measurements of a function or other attribute.
  40. 40. Designing good methods isn’t just science … it’s architecture.… the art of designing a method that gets you the information you’re really seeking.(1) BPJ approach (open‐ended questions):• Is the water regime optimal to support frog egg deposition?(2) A more standardized approach:• Is most of the wetland 1‐3 m deep?(3) A qualified standardized approach: • spatially‐qualified:   Are depths of at least 1m present in >50% of the unshaded portion of the  wetland? • temporally‐qualified: Is the above present during most of the period, May‐July?
  41. 41. Basic Principles of Wetland Functioning
  42. 42. Types of Water Sources that Sustain Wetlandsfrom: Brinson 1993
  43. 43. Groundwater & WetlandsGroundwater: Subsuface water below the water table, which is the depth where soil becomes water saturated (i.e. all pore spaces are water filled).Wetland: Areas of the surface soil layer that receive groundwater (i.e. the water table is near or at the surface; or land covered with shallow water) with great enough frequency to establish characteristic soils and plant communities.   courtesy Pennsylvania State University
  44. 44. Focus:  Ground Water from: Smith et al. 1995
  45. 45. New Groundwater Formation• Intensity/duration of precipitation.• Vegetation cover and evapotranspiration. • Topography and recharge zones. (Infiltration rate is called recharge.)• Extent of vadose (unsaturated) zone• Sheet flow (runoff) versus infiltration ‐ Soil texture & permeability  (coarser  = more infiltration) ‐ Soil water content & holding capacity  (high values may impede infiltration) courtesy Pennsylvania State University
  46. 46. National HGM Classification (Brinson 1993)HGM Class Water Sources That Define It Usual NWI SystemsEstuarine Fringe ocean> runoff> groundwater Estuarine> Riverine> PalustrineRiverine runoff> groundwater> precip Riverine> PalustrineSlope groundwater> runoff Palustrine> RiverineFlats precip> groundwater> runoff PalustrineDepressional runoff> groundwater> precip PalustrineLacustrine Fringe runoff> precip> groundwater Lacustrine> Palustrine
  47. 47. WESPAK‐SE  model for Surface Water Storage IF((SurfWater=0), 0.5*(average (Freezing,Gradient, Subsurf)),IF((NoOutlet=1), (average (LiveStore,Freezing,Gradient, Subsurf)),ELSE: (3*OutDura + 2*LiveStore + 2*Gradient + Freezing + Subsurf + Friction)/10)) Value of Surface Water Storage = FloodBdg X AVERAGE: [ average (CAunveg,Glacier),  average (ShedPos,CApct),Transport)]
  48. 48. WESPAK‐SE  model for Stream Flow Support (SFS)OutDur * { [(2*GroundwaterInput) + ClimateFactors)] / 3 } Value of Stream Flow Support = average (InvScore,AnadScore,ResFishScore,Glacier,Elev)
  49. 49. Water Quality Functions and ValuesFunctions Values of the Functions (examples)Water Cooling salmonid summer habitat in lowlandsWater Warming marine productivity & wintering fish habitatSediment Retention &  protect salmonid spawning areas; keep toxic Stabilization metals from mobilizingPhosphorus Retention maintain preferred food webs?Nitrate Removal maintain preferred food webs?   detoxification?
  50. 50. model for Water Cooling (WC) model for Water Warming (WW)If no surface water in summer, then  If no surface water, then Groundwater factors only.   Groundwater factors only.  Else, the average of 2x Groundwater  If surface water, then the average of factors and Solar Heat factors.  Groundwater factors and Solar Heat  factors.  Value of Water Cooling =  Value of Water Warming = OutDur  X [AVERAGE(ShadeIn,  OutDur X average  Fringe,Glacier,Elev,Aspect,Im (AmphScore,Fringe,Glacier,TidePr perv) + AnadFish] /2 ox,Elev,Aspect,Imperv))
  51. 51. Sediment Retention & Stabilization Tidal IF((AreaTrend=1),1,average (AreaTrend,Vwidth,HighMarsh,Gcover, Complex, BlindChan,Mudflat,Fetch)) IF((NoOutlet2=1),IFNOOUT2,IF((AllDry2=1),IFDRY2,IFOUT2)) Value of Sediment Retention Value of Sediment Retention  MAX (Eelgrass,(average:AVERAGE(Inflo2,FlowIn2,Glacier2,Imperv (averagePctSS,ErodibleSS,SedIn2,CAnatPct2,  (BuffCovPct,BuffSlope,CAcover,Glacier),BuffSlope2,Elev,CApct2,TransportSS,MaxF averageluc2,NewWet2a,ToxData2) (TidalRiver,TribDist,TribGrad,Transport))
  52. 52. Phosphorus Retention
  53. 53. model for Phosphorus RetentionValue of Phosphorus Retention: [MAX(Pload3,ImpervCA3,NatCApct3)+AVERAGE(Inflo3,BuffSlope3,ErodScore3,PosShed3, NewWet3,CApct3,Transport3,Anad3,Groundw3,Glacier3, StreamInGrad3)] /2)
  54. 54. Nitrogen Removal ‐‐ wetlands VERY important
  55. 55. model for Nitrate RemovalValue of Nitrate RemovalAVERAGE(MAX(Aquifer,Drink),MAX(NSource,CAnatPct,Imperv,PopDist), average (Inflo,ShedPos,BuffSlope,Transport, Anad,Nsource,Nfix) 
  56. 56. Organic Matter Cycling  ‐‐ contrasting values?Functions Values of the Functions (examples)Carbon Sequestration maintain global climate;  maintain wetland soil  integrity (up to a point)Organic Matter Export critically important nutrients for food webs  (nearshore marine, streams, lakes); immobilize toxic metals; protect aquatic life from ultraviolet radiation
  57. 57. model for Carbon Sequestration model for Organic Matter Export
  58. 58. Habitat Functions of WetlandsFunctions of Habitat:  • Accessible and Timely Sheltering from Predators and the Elements  (Corridors, Refugia, etc.)• Accessible and Timely Provision of Food, Water, and Special Needs   
  59. 59. Aquatic InvertebratesAnadromous FishResident & Other FishAmphibiansFeeding WaterbirdsNesting WaterbirdsSongbirds, Raptor,s &MammalsPollinatorsNative Plants
  60. 60. model for Aquatic Invertebrate Habitataverage [Struc,Productivity,average (Hydropd,Connec,Stressors,LScape]Value of Aquatic Invertebrates AVERAGE(UniqPatch, average (AnadFish,ResFish,Amphib,WbirdF,WbirdNest,SongbMam))
  61. 61. models for Anadromous Fish Habitat IF((Access=0),0, IF((Constric=0),0, ELSE:IF((Water=0),0, ELSE (average (Access,OutDura)) X (average  AVERAGE[Access, AVERAGE(Produc,Struc), (HydroRegime,Structure,Productivity, LScape,  Lscape)]Stress) Value of Anadromous Fish MAX [SalmoShed, MAX(Subsis,AVERAGE(PopCtr,BearShed),  average (WbirdFeed,SBMscore), average (Fishing, Subsist)] EstuLimited)
  62. 62. models for Resident & Other Fish Habitat IF((Access=0),0, IF((Constric=0),0, ELSE:IF((Water=0),0, ELSE  average [Access, average (Produc,Struc), AVERAGE(HydroRegime,Structure,  Lscape)]Productivity,AnoxiaRisk, Stress)) Value of Resident & Other Fish AVERAGE(feeding waterbird score,  MAX(Subsis,average subsist, fIshing) (PopCtr,BearShed),EstuLimited)
  63. 63. WESPAK‐SE model for Amphibian Habitat MAX [(AmPres,average (Hydro,AqStruc,TerrStruc,Produc,Climate,Lscape, Waterscape,Stress)] Value of Amphibian Habitat MAX[(average (UniqPatch,Geog),(average (WBFscore,SBMscore)]
  64. 64. models for Feeding Waterbird Habitat IF((Water=0),0, (Lscape+average (Water, Produc, IF((Wettype=Slope),0,ELSE:average (Hydro, Struc, Produc, Climate,  Refugia, Lscape)) /2Lscape,Stressors) Value of Feeding Waterbird Habitat IF((MAX(Rare12,IBA)>average  MAX (average (Visib, PopCtr), EstuShed), (UniqPatch,DuckHunt, Visib,  IBA, RareSp]PopCtr)),MAX(Rare12,IBA),average (UniqPatch,DuckHunt,Visib,PopCtr)))
  65. 65. models for Nesting Waterbird Habitat IF((TooSteep=1),0,IF((DeepSpot + Lake + LakeProx + Fringe =0),0, ELSE: average  [AqPlantCov, Size, Wettype,Waterscape, average (Hydro,Struc,Produc,Lscape)] Value of Nesting Waterbird Habitat = IF((MAX(Rare,_IBA)>UniqPatch),MAX(Rare,_IBA),UniqPatch
  66. 66. models for Songbird, Raptor, & Mammal Habitat IF((Dryland=0),0,  ELSE: average  (Structure,Productiv,Lscape)) IF((AllWater=1),0, ELSE:  Mainland + average (StrucA,StrucB,Produc,Lscape,Wscape, Stress))/ 2 Value of Songbird, Raptor, & Mammal Habitat IF((MAX(Rare14,  MAX(IBA,RareBird) _IBA14)>UniqPatch14),MAX(Rare14,  _IBA14),average  (IslandSmall,UniqPatch14)]
  67. 67. models for Pollinator Habitataverage (PollenOnsite, PollenOffsite,NestSites) Value of Pollinator Habitat = average (wetuniq,rareherb)
  68. 68. models for Native Plant Habitat (2*Substrate + 2*Salinity + Struc  + InvasPot + Lscape) / 7( 4*SpeciesArea + 2*AqFertil + 2*TerrFertil+2*Climate + Compet + Lscape + Stressors)/ 12 Value of Native Plant Habitat  MAX(RarePspp,(average  (UniqPatchPD,ScoreSBM,ScorePOLf,Score MAX(RarePlant,EstuScape) Subsis))
  69. 69. models for Public Use & Recognition models for Subsistence (Traditional Use) IF((NonSubsisArea=1),0, MAX(Subsist, (average (PopCtrDisS,TidalProxS,ElevS)) + (average (ConsumpU,DeerShedPS,SalmonShedPS,FishAccess)) /2) = average (Owner,average (Conven,Invest,RecPot))) tidal IF((NonSubsist=1),0, ELSE: [average (ConsumpUse, Subsist, average (PopCtr,Ownershp,Access), average (Salmoshed,FishAccess,EstuShed)] = average [Ownership,average (Convenience,Investment,RecPotenPU, OppRarity) ]
  70. 70. Wetland Stressors (FieldS data form)Too much: • enrichment   hypoxia• contamination• salt• sediment• shade • water• removal of water• removal of vegetationThe results:• invasion by exotic species• fragmentation of habitat• loss of function & value (usually)
  71. 71. Natural Disturbances to Wetlands Drought: duration, frequency Flooding: duration, frequency, extent, depth, seasonal timing natural events or beaver‐related Fire:  frequency, seasonal timing, extent, intensity (type) – effects of suppression policies or increased combustion sources Wind: frequency, intensity, direction Ice:  duration, frequency, extent Herbivory: frequency, seasonal timing, intensity (type), extentDisturbance is important to keeping wetlands functioning and healthy!• seeds of many wetland plants require periodic disturbance• scouring, wind, ice, fire clear away excessive plant litter that stymies seed generation• complete drying of wetland eliminates predatory fish and remobilizes nutrients• excessive water level stability causes stagnation and accelerates marsh succession to upland
  72. 72. model for Wetland Sensitivity  average (AbioSens,BioSens,Fertility,Climate,Colonizer,GrowthRate)Tidal:average (VwidthHi, Fetch, Nfix, BuffNatPct, BuffSlope, MarshDist, EstuShed,MAX(RareWaterBird, RareWildlife, RarePlant), Mtrend, MarshAge)
  73. 73. WESPAK‐SE model for Wetland Ecological Condition  – non‐tidal only[(average (RareAll,EmSens1_C,BareGpct) + average (HerbDom1,WoodySens2_C,ShrubDom1,GirregCQ,StrataDiv)) / 2
  74. 74. models for Wetland StressorsIF((Toxics Onsite=1),1, ELSE:((MAX(Wetter,Wetter Ex, Drier,DrierEx, AltTiming,Toxic,ToxicData, SedLoad,SoilDisturb,VegClear)) + (average (WeedSource,Core1,Core2,DistRd, VisibWet,PopCtrDist,RdBox,CAimperv,NatVegCA,AltLCtype,BuffDisturbTyp,Owner)))/ 2tidalIF((Toxics Onsite=1),1, ELSE:MAX(WetterIn, WetterCA, DrierIn, DrierCA, AltTiming, ToxicsIn, SedCA, SoilAltIn, VegClear, ErodAlt))]average [ToxDoc, average (Core1alt, Core2alt, VisibAlt, PopCtrAlt, BarriersAlt, RoadsAlt),average (NatDistAlt, NatPctAlt, NatTypeAlt, SizeAlt, ImpervAlt, TransptAlt)
  75. 75. Rapid Assessment ‐‐ Have We Created a Frankenstein?But, these aren’t just Wetland issues ...Economic AssessmentEducational TestingForest Health AssessmentRangeland AssessmentRiparian Assessment
  76. 76. “No Net Loss” – Factors That Could Influence Ratios for Offsite Mitigationa). Risk of Failure Type of Mitigation Wetland Type & Design (“appropriateness”) Location Stressors Sensitivity of the Geomorphic Setting Long-term Financial Securityb). Acresc). Wetland Importance Functions, Values, Sensitivity Paul Adamus March 2010
  77. 77. Example 2. Enhancing a degraded wetland as compensation
  78. 78. Multiply Scores by Acres?Need for Caution:• A site that is poor habitat for (say) amphibians is poor habitat, regardless of whether it is 0.1 acre or 100 acres.   • Functions may be supported within only PART of a site.• Some functions are non‐linearly related with area.• Small wetlands in critical locations may be functionally outstanding.• Small wetlands of high social value are unusually important.
  79. 79. Paul Adamus March 2010
  80. 80. Wetlands Credit Accounting Key Components • Eligibility • Calculation Method • Verification • Registration • TrackingCalculation Options (examples)A. Average the service scores (mitigation site only) and multiply by acresB. Apply standard mitigation ratios, calculated mainly for impact site.C. Match debit site losses with mitigation site gains, with acreage multiplier.D. Match debit site losses with mitigation site gains, without acreage multiplier.
  81. 81. Strategy A.  Average the service scores (mitigation site only) and multiply by acres Credit Site Effectiveness  Gain Value averageFunction Group: Hydrologic Function 2 2 2.00 Water Quality Functions  2 4 3.00 Fish Support  6 4 5.00 Aquatic Support  8 3 5.50 Terrestrial Support  4 7 5.50 Average of Scores * 0.1= 0.42 x acres 6 Credits= 2.52Important Exceptions: AT DEBIT SITE: Very Low* Value Intermediate * Value Outstanding* ValueOutstanding*  (This strategy  use another strategy use another Effectiveness allowed) strategyIntermediate  (This strategy  (This strategy  use another Effectiveness allowed) allowed) strategyVery Low* Effectiveness (This strategy  (This strategy  (This strategy  allowed) allowed) allowed)
  82. 82. Strategy B.  Apply standard mitigation ratios, calculated mainly for impact site. Debit Site Credit Site Effective Effective.  ness  Value Avg Gain Value Avg. Function Group: Hydrologic Function  7 2 4.50 ‐‐ 8 8.00 Water Quality Functions  9 8 8.50 ‐‐ 10 10.00 Fish Support 6 6 6.00 ‐‐ 9 9.00 Aquatic Support 8 9 8.50 ‐‐ 6 6.00 Terrestrial Support 9 7 8.00 ‐‐ 7 7.00 Average of Scores= 7.10 8.00 suggested ratio: 2.50 1.50 acres= 6.00 4.00 credits 15.00 2.40In this example, on the debit side, the services score (7.10) qualifies that wetland as a “high‐level” service site, so the applied ratio (2.5) is the highest of the choices for ratios.  If services were moderate, the ratio might be 2.0, if services were low, the ratio might be 1.5.
  83. 83. Strategy C.  Match debit site losses with mitigation site gains, with acreage multiplier. Debit Site Credit Site Effective‐ ness Effective‐ Gain  ness Value Acres (post‐pre) Value Acres Credits 7>2, so go to anotherHydrologic 7 5 2 2 credit siteWater Quality 4 3 6 9 2*[1+(2/4)] = 3 credits 4 2Fish Support  6 2 6 4 2*[1+(2/4)] = 3 credits 3*[1+(2/4)] = 4.5Aquatic Support  3 6 6 5 credits 5>3, so go to anotherTerrestrial Support 5 5 3 7 credit site
  84. 84. Strategy D.  Match debit site losses with mitigation site gains, with acreage multiplier.• No multiplication or averaging of functions and values.  • Acreage at the credit site (i.e., the enhanced or restored part of it) must be no less than that lost at debit site. • Function Effectiveness (post‐enhancement) and Value scores of all function groups at the credit site must be no less than their equivalents lost at the debit site, ± 1 point.  • If either the Effectiveness (post‐enhancement) or Value score is greater at the credit site than debit site, consider reducing the required mitigation ratio, on a case‐by‐case basis.
  85. 85. 3. Function-based Crediting (a.k.a., Should I become a mitigation banker?) CREDITS = Acres x Functional Lift Example:  12 acre rehabilitation at a mitigation bank CREDIT wetland (e.g.,  Mitigation Bank) PRE POST Function Group: Hydrologic Function 2.38 2.92 Water Quality Functions 4.10 5.17 Fish Support Functions 5.33 6.72 Aquatic Support Functions 7.01 7.28 Terrestrial Support Functions 5.51 6.68 Average of Scores x 0.1= 0.49 0.58 x acres 12.00 12.00 Function Acres= 5.88 6.96 6.96‐5.88= 1.08 credit
  86. 86. At Credit site: Discount 25% (1.08 x .75= 0.81 credit) if the Rehabilitation is not part of a“Wetland Priority Area”.Then, apply multipliers to the acreage of the Impact site: Some Time  IMPACT Site No Time Loss Loss Not part of a Wetland Priority Area: acres x 1.5 acres x 2 Part of a Wetland Priority Area: acres x 2 acres x 2.5 * Time Loss= no dirt moved or veg planted yet for rehabilitation So, if the Impact site is in a Wetland Priority Area AND buyer is getting credits from an incomplete rehabilitation, then the debit is: 0.54 acres x 2.5 = 1.35 acres (which must be replaced) A mitigation bank that has finished rehabilitating 1.35 acres could meet this need of the buyer.
  87. 87. Also – in Oregon:• Meet sequencing priorities: Avoidance> Minimization> Compensation• Replace Impact wetland withwetland of same HGM & Cowardintype (usually).• Replace within the sameService Area (in Oregon= HUC4).• Compensatory actions mustqualify (meet definitions).• Compensation actions musteventually meet performancecriteria (as monitored).
  88. 88. Compensating for STREAM impacts: example from Montana
  89. 89. Other Ecosystem Services (consensus of 12+ agencies, facilitated by Willamette Partnership)“Currencies” With Tools• Wetlands• Upland Prairies• Salmon Habitat• Stream Temperature• Nutrients