Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Unidad de Aprendizaje II
Límites y Derivación
Bloque Temático VI
Concepto Límite y Notación
Límites laterales
Existencia d...
Apertura: Evaluación Diagnóstica
Esta evaluación te servirá a ti y a tu profesor para identificar los
aprendizajes adquiri...
APERTURA: Evaluación Diagnóstica
Si 𝑓 𝑥 = 3𝑥2
− 2𝑥 + 5, hallar:
Ejercicio #1 𝒇 𝟐 =
Ejercicio #2 𝒇 𝟐 =
Ejercicio #3 𝒇
𝒂
𝟓
=...
Competencia Específica
Utilizar la definición de límite de funciones para
determinar analíticamente la continuidad de una ...
Introducción
Las dos grandes áreas del cálculo, denominadas cálculo
diferencial y cálculo integral, se basan en el concept...
Idea intuitiva del límite
Sea la función definida por la ecuación 𝑓 𝑥 =
2𝑥2−3𝑥−2
𝑥−2
para
toda 𝐱 ∈ ℝ, 𝒙 ≠ 𝟐
Verificar el c...
Idea intuitiva del límite
De la gráfica puede observarse que, aunque la función 𝑓 no esta
definida para 𝑥 = 2, cuando x to...
Definición 1
Escriba
lim
𝑥→𝑎
𝑓 𝑥 = 𝐿
Que se expresa como: “el límite de 𝒇(𝒙) cuando 𝒙
tiende 𝐚, es igual a 𝑳”
Si podemos a...
Definición 2
Definición informal
lim
𝑥→𝑎
𝑓 𝑥 = 𝐿
Si 𝒇(𝒙) puede hacerse arbitrariamente próximo al
número 𝐿 al tomar 𝑥 sufi...
Notación
El análisis del concepto de límite se facilita al
usar una notación especial. Si el símbolo de
flecha → represent...
Límites Laterales
Límites por dos lados
Si tanto el límite por la
izquierda como el límite
por la derecha existen y
tienen un valor común.
l...
Existencia o no existencia
La existencia de un límite de una función f cuando x
tiende a a, no depende de si f está defini...
Límite no existe
En general, el límite por los lados no existe cuando:
Caso 1:
Si alguno de los dos límites laterales
lim
...
ActividadDeterminar los siguientes límites, utilizando
para ello la representación gráfica de la
función g, que se da a co...
Actividad
La gráfica de la función definida por partes
𝒇 𝒙 =
𝒙 𝟐,
−𝒙 + 𝟔,
𝒙 < 𝟐
𝒙 > 𝟐
lim
𝒙→𝟐
𝒇(𝒙) =
𝒙 → 𝟐− 1.9 1.99 1.999...
Actividad
La gráfica de la función definida por partes
𝒇 𝒙 =
𝒙 + 𝟐,
−𝒙 + 𝟏𝟎,
𝒙 ≤ 𝟓
𝒙 > 𝟓
lim
𝒙→𝟓
𝒇(𝒙) =
𝒙 → 𝟓− 4.9 4.99 4....
Actividad
Una forma indeterminada
𝒇 𝒙 =
𝒙
𝒙
𝟏,
−𝟏,
𝒙 > 𝟎
𝒙 < 𝟎
lim
𝒙→𝟎−
𝒇(𝒙) =
lim
𝒙→𝟎+
𝒇(𝒙) =
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
Actividad
Un límite trigonométrico importante
𝒇 𝒙 =
sin 𝒙
𝒙
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → ...
Actividad
Un límite por la derecha
𝒇 𝒙 = 𝒙
Se concluye:
lim
𝒙→𝟎+
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → 𝟎+ 0.1 0.01 0.00...
Actividad
Límite trigonométrico
𝒇 𝒙 =
𝟏 − 𝒄𝒐𝒔 𝒙
𝒙
Se concluye:
lim
𝒙→𝟎
𝒇(𝒙) =
𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001
𝑓(𝑥)
𝒙 → 𝟎+ 0.1 0.0...
Upcoming SlideShare
Loading in …5
×

Concepto: Límite, notación, límites laterales y existencia

13,238 views

Published on

Cálculo Diferencial, se abordarán el concepto del límite de forma informal, para establecer la notación y la existencia del límite cuando sus límites laterales son iguales.

Published in: Education
  • Be the first to comment

Concepto: Límite, notación, límites laterales y existencia

  1. 1. Unidad de Aprendizaje II Límites y Derivación Bloque Temático VI Concepto Límite y Notación Límites laterales Existencia del Límite Facilitador: Saúl Olaf Loaiza Meléndez
  2. 2. Apertura: Evaluación Diagnóstica Esta evaluación te servirá a ti y a tu profesor para identificar los aprendizajes adquiridos hasta el momento, así como los necesarios para el estudio de los contenidos de este bloque temático.
  3. 3. APERTURA: Evaluación Diagnóstica Si 𝑓 𝑥 = 3𝑥2 − 2𝑥 + 5, hallar: Ejercicio #1 𝒇 𝟐 = Ejercicio #2 𝒇 𝟐 = Ejercicio #3 𝒇 𝒂 𝟓 = Ejercicio #4 En la siguiente función, realice la gráfica cuando x=-4,-3,-2,1,6: h 𝑥 = − 𝑥 + 3 5 Trace la gráfica de la función, donde se observen las intersecciones de x, es decir cuando g 𝑥 = 0 𝒈 𝒙 = 𝒙 𝟐 + 𝟐𝒙 − 𝟐
  4. 4. Competencia Específica Utilizar la definición de límite de funciones para determinar analíticamente la continuidad de una función en un punto o en un intervalo y muestra gráficamente los diferentes tipos de discontinuidad.
  5. 5. Introducción Las dos grandes áreas del cálculo, denominadas cálculo diferencial y cálculo integral, se basan en el concepto fundamental de límite. En este bloque, el enfoque que haremos a este importante concepto será intuitivo, centrado en la compresión de qué es un límite mediante el uso de ejemplos numéricos y gráficos.
  6. 6. Idea intuitiva del límite Sea la función definida por la ecuación 𝑓 𝑥 = 2𝑥2−3𝑥−2 𝑥−2 para toda 𝐱 ∈ ℝ, 𝒙 ≠ 𝟐 Verificar el comportamiento de la función cuando x tiende a 2 X f(x) 1.25 1.5 1.75 1.9 1.99 1.999 1.9999 X f(x) 2.75 2.5 2.25 2.1 2.01 2.001 2.0001
  7. 7. Idea intuitiva del límite De la gráfica puede observarse que, aunque la función 𝑓 no esta definida para 𝑥 = 2, cuando x toma valores muy cercano a 2 la función se aproxima a 5, lo que escribimos como: lim 𝑥→2 𝑓 𝑥 = 5
  8. 8. Definición 1 Escriba lim 𝑥→𝑎 𝑓 𝑥 = 𝐿 Que se expresa como: “el límite de 𝒇(𝒙) cuando 𝒙 tiende 𝐚, es igual a 𝑳” Si podemos acercar arbitrariamente los valores de 𝒇(𝒙) a 𝑳 (tanto como desee) escogiendo una 𝒙 lo bastante cerca de 𝒂, pero no igual a 𝒂
  9. 9. Definición 2 Definición informal lim 𝑥→𝑎 𝑓 𝑥 = 𝐿 Si 𝒇(𝒙) puede hacerse arbitrariamente próximo al número 𝐿 al tomar 𝑥 suficientemente cerca de, pero diferente de un número 𝒂, por la izquierda y por la derecha de 𝒂, entonces el límite de 𝒇(𝒙) cuando 𝑥 tiende a a es 𝑳.
  10. 10. Notación El análisis del concepto de límite se facilita al usar una notación especial. Si el símbolo de flecha → representa la palabra tiende, entonces el simbolismo 𝑥 → 𝑎− Indica que x tiende al número a por la izquierda 𝑥 → 𝑎+ Significa que x tiende a a por la derecha
  11. 11. Límites Laterales
  12. 12. Límites por dos lados Si tanto el límite por la izquierda como el límite por la derecha existen y tienen un valor común. lim 𝑥→𝑎− 𝑓(𝑥) = 𝐿 lim 𝑥→𝑎+ 𝑓(𝑥) = 𝐿 Entonces: lim 𝑥→𝑎 𝑓(𝑥) = 𝐿
  13. 13. Existencia o no existencia La existencia de un límite de una función f cuando x tiende a a, no depende de si f está definida en a, sino sólo de si está definida para x cerca del número a. Por ejemplo: Se observa aunque 𝑓 −4 = 5 lim 𝑥→−4 16 − 𝑥2 4 + 𝑥 = 8
  14. 14. Límite no existe En general, el límite por los lados no existe cuando: Caso 1: Si alguno de los dos límites laterales lim 𝑥→𝑎− 𝑓(𝑥) o lim 𝑥→𝑎+ 𝑓(𝑥) no existe. Caso 2: Si lim 𝑥→𝑎− 𝑓(𝑥) = 𝐿1 y lim 𝑥→𝑎+ 𝑓(𝑥) = 𝐿2, pero 𝐿1 ≠ 𝐿2
  15. 15. ActividadDeterminar los siguientes límites, utilizando para ello la representación gráfica de la función g, que se da a continuación:
  16. 16. Actividad La gráfica de la función definida por partes 𝒇 𝒙 = 𝒙 𝟐, −𝒙 + 𝟔, 𝒙 < 𝟐 𝒙 > 𝟐 lim 𝒙→𝟐 𝒇(𝒙) = 𝒙 → 𝟐− 1.9 1.99 1.999 𝑓(𝑥) 𝒙 → 𝟐+ 2.1 2.01 2.001 𝑓(𝑥)
  17. 17. Actividad La gráfica de la función definida por partes 𝒇 𝒙 = 𝒙 + 𝟐, −𝒙 + 𝟏𝟎, 𝒙 ≤ 𝟓 𝒙 > 𝟓 lim 𝒙→𝟓 𝒇(𝒙) = 𝒙 → 𝟓− 4.9 4.99 4.999 𝑓(𝑥) 𝒙 → 𝟓+ 5.1 5.01 5.001 𝑓(𝑥)
  18. 18. Actividad Una forma indeterminada 𝒇 𝒙 = 𝒙 𝒙 𝟏, −𝟏, 𝒙 > 𝟎 𝒙 < 𝟎 lim 𝒙→𝟎− 𝒇(𝒙) = lim 𝒙→𝟎+ 𝒇(𝒙) = Se concluye: lim 𝒙→𝟎 𝒇(𝒙) =
  19. 19. Actividad Un límite trigonométrico importante 𝒇 𝒙 = sin 𝒙 𝒙 Se concluye: lim 𝒙→𝟎 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)
  20. 20. Actividad Un límite por la derecha 𝒇 𝒙 = 𝒙 Se concluye: lim 𝒙→𝟎+ 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)
  21. 21. Actividad Límite trigonométrico 𝒇 𝒙 = 𝟏 − 𝒄𝒐𝒔 𝒙 𝒙 Se concluye: lim 𝒙→𝟎 𝒇(𝒙) = 𝒙 → 𝟎− ‒0.1 ‒0.01 ‒0.001 𝑓(𝑥) 𝒙 → 𝟎+ 0.1 0.01 0.001 𝑓(𝑥)

×