Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

[Microsoft Connect(); Japan 2017] Microsoft AIによるインテリジェント アプリケーションの構築 (Build Intelligent apps with Microsoft AI Platform)

https://satonaoki.wordpress.com/2017/11/18/connect-japan-ai/

  • Login to see the comments

  • Be the first to like this

[Microsoft Connect(); Japan 2017] Microsoft AIによるインテリジェント アプリケーションの構築 (Build Intelligent apps with Microsoft AI Platform)

  1. 1. https://channel9.msdn.com/Events/ Connect/2017/G102#time=09m00s https://blogs.technet.microsoft.com/ machinelearning/2017/11/15/ gain-insights-into-the-jfk-files-with- azure-search-and-cognitive-services/
  2. 2. Web App (azsearch.js) Blob Storage Azure Function Skills: Computer Vision OCR + Handwriting Entity Linking CIA Cryptonyms Azure Search Cosmos DB Azure Machine Learning Cognitive Skill Set JFK FILES COGNITIVE SEARCH ARCHITECTURE Skill: Topics
  3. 3. The Microsoft AI platform: Azure+AI Cloud-powered AI for every developer Services Infrastructure Tools
  4. 4. Azure Databricks Quickly launch and scale on demand Rich interactive workspace Integrated with Azure Active Directory, Power BI, SQL Data Warehouse, Cosmos DB and Azure Machine Learning Apache® Spark™ based analytics platform optimized for Azure
  5. 5. https://channel9.msdn.com/Events/ Connect/2017/T257#time=00m40s
  6. 6. Azure Databricks Apache® Spark™ based analytics platform optimized for Azure
  7. 7. Productive, Scale-out, Full-lifecycle AI Development Model Management Deploy, Version, Manage & Monitor Models Workbench Wrangle Data, Build models, Deploy & Manage Experimentation Boost productivity with Spark, GPUs and agile development.
  8. 8. AI-powered Data Wrangling + E2E ML Dev Productivity + Deploy Anywhere = E2E Tooling for AI Development Program Synthesis Docker, Spark, IoT Edge, On prem, AWS/GCP… Spark, GPU, Open Source Lifecycle Management
  9. 9. Built-in AI-powered Data Wrangling Collaboration with notebooks & Git Version control & reproducibility Metrics, lineage, run history, asset management, and more
  10. 10. Build on any ML framework or library Distributed learning with Apache Spark Scale out GPU Training in the Cloud
  11. 11. Azure Container Service (scale out with Kubernetes clusters) Azure IoT Edge Spark on HDInsight On-prem, AWS, GCP….
  12. 12. https://channel9.msdn.com/Events/ Connect/2017/G102#time=26m50s https://blogs.technet.microsoft.com/ machinelearning/2017/06/27/ saving-snow-leopards-with- deep-learning-and-computer-vision- on-spark/
  13. 13. https://channel9.msdn.com/Events/ Connect/2017/T234#time=03m00s
  14. 14. https://channel9.msdn.com/Events/ Connect/2017/G102#time=37m00s
  15. 15. https://channel9.msdn.com/Events/ Connect/2017/G102#time=46m50s

×