Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Pattern Recognition

  • Login to see the comments

Pattern Recognition

  1. 1. Pattern Recognition<br />Nick Lund<br />Attention and Pattern Recognition<br />
  2. 2. Introduction<br /> Pattern recognition has been defined as ‘the ability to abstract and integrate certain elements of a stimulus into an organised scheme for memory storage and retrieval’ (Solso,1998).<br />
  3. 3. Features of pattern recognition<br /> Five principles(Solso,1998):<br /> 1.Quickly and accurately.<br /> 2.Recognise and classify unfamiliar objects.<br /> 3.Accurately recognise shapes and objects from different angles.<br />
  4. 4. Features of pattern recognition<br />4.Identify patterns and objects even when partly hidden.<br />5.Recognise patterns quickly,with ease,and with automaticity. <br />
  5. 5. Features of pattern recognition<br /> Template matching theories<br /> Feature analysis<br /> Prototype theories<br />
  6. 6. Top-down and bottom-up processing<br /> An examination of the theories of pattern recognition raises the question of whether pattern recognition involves top-down or bottom-up processing.<br />
  7. 7. Bottom- up process<br />Template matching theory<br /> Geons (Structural- description theory)<br /> Feature theory<br /> Prototype theory<br />
  8. 8. Template matching theory<br />External stumuli matches internal template<br /> Vast numbers of templates are stored<br /> Templates are created by experience<br />E.x.: visit Russia<br />
  9. 9. A<br />A<br />A<br />A<br />Problems:<br />1) Only occurs when there’s a one-to-one match<br /> Payne and Wenger (1998)<br />
  10. 10. 2) Where are all these templates stored?<br />3) Slow process<br />Ex.: recognize 1000-1500 letters a minute<br />4) To recognize new variations of a pattern (Solso, 1998)<br />
  11. 11. Geons (Structural- description theory)<br /> Biederman (1987)<br /> Limited number (24) of simple geometric shapes , or geons for us to analyse patterns.<br />Ex.: mug v.s. bucket<br />
  12. 12. Geons<br />
  13. 13. Advantage:<br />Recognize pattern from different angles<br /> Disadvantage:<br />Can’t explain why we recognize a particular chair.<br />Ex.: My face v.s. my friend’s face<br />
  14. 14. Feature theory<br /> Patterns are recognized by analysis of the individual features of the pattern.<br />Ex.: MANGO<br />M<br />A<br />
  15. 15. Four stages of pattern recognition<br />Image demons: record the image and pass it<br />Feature demons: analyse the image for specific feature<br />Ex.: <br />Pandemonium model (Selfridge, 1959)<br />
  16. 16.
  17. 17. Cognitive demons: detect the present feature and shout<br />Decision demons: pick up the loudest feature<br />
  18. 18. Advantage:<br /> More flexible than template theory<br />Ex.: A , regardless of size, shape or orientation<br />Neisser:<br /> M -> N H M V -> longer RT <br /> (more distracter)<br /> M -> O M Q G -> shorter RT<br />
  19. 19. Disadvantage:<br />Fail to account for the effects of context and expectations<br />Ex.:<br />Two experiments which can’t explain feature theory<br />Fail to detect “t” in “the” (Healy)<br />Teacup, eyebrow -> cup, eye ; eac, ebr (Inhoff and Topolski)<br />
  20. 20. Eysenck and Keane:<br /><ul><li>How can we recognize patterns when their features are hidden from view?</li></ul>Relationship between the features<br /><ul><li>Ex. : T v.s. L</li></li></ul><li>The biology of feature theory<br /> Hubel and Wiesel (1959)<br /> In visual cortex:<br />Simple cells: particular orientation, specific location<br />complex cells: lines or edges, in all visual field<br />Hypercomplex cells: length and angles, combination of features <br />
  21. 21. Disadvantage:<br />Some questioned the existence of hypercomlex cells<br />How specialized they need to be?<br />Run out of cells<br />
  22. 22. Prototype theory<br /> External stimuli matches with internal abstract prototype<br />Ex.: R, compare to all other “R”s <br /> Solso(1998): two theoretical models<br />Central-tendency model:<br /><ul><li>The average, mean</li></ul>Attribute-frequency model:<br /><ul><li>Most common combination, mode</li></li></ul><li>Advantage:<br />More “economical” than template theory<br />Don’t need templates for every shape, size, orientation<br />Explain the speed of recognition of letters, words and patterns / novel stimuli<br />
  23. 23. Disadvantage:<br />can’t explain the effect of context (Eysenck, 1993)<br /> old woman v.s. young lady<br />B, R, P have similar prototype<br />
  24. 24. Top-down processing<br /> Word superiority effect <br /> Rat-Man demonstration<br />
  25. 25. Rat-Man demonstration<br />
  26. 26. Rat-Man demonstration<br />
  27. 27. Rat-Man demonstration<br />
  28. 28. The effect of context<br />
  29. 29. Summary<br />Pattern Recognition <br />Theories<br />Template matching<br />Feature analysis<br />Prototype <br />Central-tendency<br />Attribute- frequency<br />
  30. 30. Summary<br />Word superiority effect<br />Rat-Man demonstration<br />Pandemonium model<br />Geons<br />Top-down processing<br />Bottom- up processing<br />
  31. 31. THE END<br />

×