Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Gerard Schepers - Advanced Aerodynamic Tools for Large Rotors (AVATAR) Project

549 views

Published on

Schepers avatar 30_8_16

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Gerard Schepers - Advanced Aerodynamic Tools for Large Rotors (AVATAR) Project

  1. 1. www.eera-avatar.eu This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grand agreement No FP7-ENERGY-2013-1/n° 608396 . AVATAR project Advanced Aerodynamic Tools for lArge Rotors Gerard Schepers 2016 Wind Turbine Blade Workshop Sandia National Laboratories, USA August 31st, 2016
  2. 2. FP7-ENERGY-2013-1/ n° 608396 2 List of Contents q Introduction into the project q Design of AVATAR Reference Wind Turbine 1) q Aerodynamics at high Reynoldsnumbers • Airfoil measurements in pressurized DNW-HDG tunnel 2) q Aero-elasticity of large turbines at yaw • BEM versus free vortex wake aerodynamic modelling3) 19-09-16 1) Acknowledgement G. Sieros, M. Stettner 2) Acknowledgement O. Ceyhan, O. Pires 3) Acknowledgement K. Boorsma, S. Voutsinas And all other project partners!
  3. 3. FP7-ENERGY-2013-1/ n° 608396 3 EU FP7 Project initiated by EERA 1. Energy Research Centre of the Netherlands,ECN (Coordinator) 2. Delft University of Technology,TUDelft 3. Technical University ofDenmark, DTU 4. Fraunhofer IWES 5. University of Oldenburg,Forwind 6. University of Stuttgart, USTUTT 7. National Renewable Energy Centre,CENER 8. University of Liverpool/University ofGlasgow, ULIV/UoG 9. Centre for Renewable Energy Sources and Saving,CRES 10.National Technical University ofGreece, NTUA 11.Politecnico di Milano,Polimi 12.GE Global Research,Zweigniederlassung der General Electric Deutschland Holding GmbH,GE 13.LM Wind Power, LM 19-09-16
  4. 4. FP7-ENERGY-2013-1/ n° 608396 4 Period • Project period: November 1st 2013- November 1st 2017
  5. 5. FP7-ENERGY-2013-1/ n° 608396 5 Main motivation for AVATAR: Aerodynamics of large wind turbines (10-20MW) • We simply don’t know if present aerodynamic models are good enough to design 10MW+ turbines • 10MW+ rotors violate assumptions in current aerodynamic tools, e.g.: – Reynolds number effects, – Compressibility effects – Thick(er) airfoils – Flow transition and separation, – (More) flexible blades – Flow devices • Hence 10MW+ designs fall outside the validated range of current state of the art tools. 19-09-16
  6. 6. FP7-ENERGY-2013-1/ n° 608396 6 Avatar: Main objective To bring the aerodynamic and fluid-structure models to a next level and calibrate them for all relevant aspects of large (10MW+) wind turbines 19-09-16
  7. 7. FP7-ENERGY-2013-1/ n° 608396 7 Avatar: Work procedure – Problem: No 10 MW turbines are on the market yet for validation – Hence: Validate submodels against experiments • Pressurized HDG tunnel of German Dutch Wind Tunnel facilities (DNW) • Airfoil measurements at Reynolds numbers up to RE = 15 M and low Mach (< 0.2) • LM: Wind tunnel airfoil measurements • Forwind: Wind tunnel airfoil measurements at representative turbulence • TUDelft: Wind tunnel experiments on airfoils with vortex generators, flaps • NTUA: Wind tunnel experiments on airfoils with/without vortex generators • DTU : Danaero: Aerodynamic field experiments on a 2.3 MW turbine and supporting 2D wind tunnel measurements 19-09-16
  8. 8. FP7-ENERGY-2013-1/ n° 608396 8 Avatar: Work procedure Use the different models from partners in the project o It is a cooperation project! o In the project we have many models which range from computational efficient ‘engineering’ tools to high fidelity but computationally expensive tools o Engineering tools are needed in industrial design codes 1) o High fidelity models (and intermediate models) feed information towards engineering models 19-09-16 1 ) J.G. Schepers ‘Engineering models in wind energy aerodynamics,’ (2012). http://repository.tudelft.nl/islandora/object/uuid:92123c07-cc12-4945-973f-103bd744ec87/?collection=research
  9. 9. FP7-ENERGY-2013-1/ n° 608396 9 Avatar: Work procedure • Demonstrate the value of the improved tools on 10 MW reference rotors with and without flow control devices 1. INNWIND.EU reference rotor (more or less conventional design philosophy) 2. AVATAR reference rotor which should be more challenging from an aerodynamic point of view (e.g. lower induction, longer, more slender blades, thicker airfoils, higher tip speed). • Compare results from ‘old’ and improved models at the end of the project
  10. 10. FP7-ENERGY-2013-1/ n° 608396 10 List of Contents q Introduction into the project q Design of AVATAR Reference Wind Turbine 1) q Aerodynamics at high Reynoldsnumbers • Airfoil measurements in pressurized DNW-HDG tunnel q Aero-elasticity of large turbines at yaw • BEM versus free vortex wake aerodynamic modelling 19-09-16 1) Acknowledgement G. Sieros, M. Stettner
  11. 11. AVATAR RWT Power: 10 MW 10 MW Rotor diameter: 178.3m 205.8m WTPD: 400 W/m2 300 W/m2 Axial induction: 0.3 0.24 RPMàTip speed 9.8rpmà 90m/s 9.8 à103.4 m/s Hub height: 119m 132.7m
  12. 12. FP7-ENERGY-2013-1/ n° 608396 Classical Approach versus Low Induction • Power Coefficient flat around Betz maximum (a = 1/3) • Aerodynamic load coefficient strongly dependant on a • Increase diameterà maintain aerodynamic loadsà increase power 2 3 )1(4 2 1 aa AU P CP == 0 0.2 0.4 0.6 0.8 1 1.2 0 0.1 0.2 0.3 0.4 0.5 0.6 Cdax Cp )1(4 2 1 . 2 . aa AU axD C axD == a[-]
  13. 13. FP7-ENERGY-2013-1/ n° 608396 13 Design of AVATAR RWT • 5% Increase in energy production due to larger diameter • Key rotor load levels are maintained • Non-rotor loads exceededà Redesign of AVATAR rotor at end of project • Note: LCOE of AVATAR turbine assessed in 1) taking into account additional advantage of lower wake effects 1) R. Quinn, B. Bulder, J.G. Schepers A parametric investigation into the effect of low induction rotor (LIR) wind turbines on the LCoE of a 1GW offshore wind farm in a North Sea wind climate, EERA-Deepwind 2016
  14. 14. FP7-ENERGY-2013-1/ n° 608396 Design of AVATAR RWT • The operational conditions Section Thickness Re (rated) Ma (rated) Re (Min) Ma (Min) 60.0% 7.0×106 0.05 4.4×106 0.03 40.1% 11.0×106 0.07 7.0×106 0.05 35.0% 14.0×106 0.09 9.0×106 0.06 30.0% 17.0×106 0.12 10.0×106 0.07 24.0% 20.0×106 0.16 12.0×106 0.10 24.0% 16.0×106 0.25 11.0×106 0.15 24.0% 13.0×106 0.30 8.0×106 0.18 21.0% 20.0×106 0.16 12.0×106 0.10 21.0% 16.0×106 0.25 11.0×106 0.15 21.0% 13.0×106 0.30 8.0×106 0.18 Section Thickness Re (rated) Ma (rated) Re (Min) Ma (Min) 60.0% 7.0×106 0.05 4.4×106 0.03 40.1% 11.0×106 0.07 7.0×106 0.05 35.0% 14.0×106 0.09 9.0×106 0.06 30.0% 17.0×106 0.12 10.0×106 0.07 24.0% 20.0×106 0.16 12.0×106 0.10 24.0% 16.0×106 0.25 11.0×106 0.15 24.0% 13.0×106 0.30 8.0×106 0.18 21.0% 20.0×106 0.16 12.0×106 0.10 21.0% 16.0×106 0.25 11.0×106 0.15 21.0% 13.0×106 0.30 8.0×106 0.18
  15. 15. FP7-ENERGY-2013-1/ n° 608396 15 List of Contents q Introduction into the project q Design of AVATAR Reference Wind Turbine q Aerodynamics at high Reynolds numbers • Airfoil measurements in pressurized DNW-HDG tunnel 1) q Aero-elasticity of large turbines at yaw • BEM versus free vortex wake aerodynamic modelling 19-09-16 1) Acknowledgement O. Ceyhan, O. Pires
  16. 16. FP7-ENERGY-2013-1/ n° 608396 Measurements in DNW-HDG pressurized tunnel • Measurements up to Re = 15M (and low M) • DU00-W-212 selected as common airfoil – Also measured by: – LM up to RE=6M – Forwind at controlled turbulent conditions up to Re = 1M • Results are brought into a ‘blind test’ – Measurements compared with calculations – Blind test included participants outside project DNW-HDG model, c=15 cm
  17. 17. FP7-ENERGY-2013-1/ n° 608396 DNW-HDG Wind Tunnel General Tunnel Characteristics Test section : 60cmx60cm Fan Rpm : 200 – 820 Fan bladeangle fixed Tunnel Pres. : 1 – 100×105 Pa Tunnel Temp.: ambient to 45°C
  18. 18. FP7-ENERGY-2013-1/ n° 608396 Test Section Probe holder for hot wire 90 PTs at half span Wake rake 118 pitot tubes 6 pressure taps Kulites 4 pressure side 1 suction side 3-component Balance Sensicam & UV LED’s Flow visualization
  19. 19. FP7-ENERGY-2013-1/ n° 608396 Participants/Codes Test 1. Re=3mil Test 2. Re=6mil-1 Test 3. Re=6mil-2 Test 4. Re=9mil-1 Test 5. Re=9mil-2 Test 6. Test 7. Re=12mil Re=15mil Pt [bars] 12 34 67 34 67 67 60 Vtunnel [m/s] 25.6 19 10 28.6 15 20 28.4 Full CFD DTU/EllipSys Fully turbulent Transition Yes Yes Yes Yes Yes Yes Yes KIEL/TAU Fully turbulent Transition Yes Yes Yes Yes Yes Yes Yes NTUA/Mapflow Fully turbulent Transition Yes Yes Yes Yes Yes Yes Yes UoG/HMB Fully turbulent Yes Yes Transition Yes Yes Forwind-IWES/OpenFOAM Fully turbulent Yes Yes Yes Yes Yes Yes Yes Transition Panel Methods USTUTT/XFOILvUSTUTT Fully turbulent Transition Yes Yes Yes Yes Yes Yes Yes ORE Catapult/XFOILv6.96 Fully turbulent Transition Yes Yes Yes Yes Yes Yes Yes
  20. 20. FP7-ENERGY-2013-1/ n° 608396 DNW-HDG Full CFD calculations vs measurements Effect in Blade Design parameter: Cl/Cd -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp DTU-Ellipsys NTUA-MaPFlow Kiel-TAU F-I-OpenFOAM UoG-HMB Test1 Rey=3đ106 Ti3 ( 0.09% ) -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp DTU-Ellipsys NTUA-MaPFlow Kiel-TAU- F-I-OpenFOAM UoG-HMB Test3 Rey=6đ106 Ti3 ( 0.2% )
  21. 21. FP7-ENERGY-2013-1/ n° 608396 DNW-HDG Full CFD calculations vs measurements Effect in Blade Design parameter: Cl/Cd -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp DTU-Ellipsys NTUA-MaPFlow Kiel-TAU F-I-OpenFOAM Test5 Rey=9đ106 Ti3 ( 0.24% ) -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp DTU-Ellipsys NTUA-MaPFlow Kiel-TAU F-I-OpenFOAM Test7 Rey=15đ106 Ti3 ( 0.33% )
  22. 22. FP7-ENERGY-2013-1/ n° 608396 DNW-HDG Panel code calculations vs measurements Effect in Blade Design parameter: Cl/Cd -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp ORE-XFOIL UoS-XFOIL* DTU-EllipSys Test1 Rey=3đ106 Ti3 ( 0.09% ) -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp ORE-XFOIL UoS-XFOIL* DTU-EllipSys Test3 Rey=6đ106 Ti3 ( 0.2% )
  23. 23. FP7-ENERGY-2013-1/ n° 608396 DNW-HDG Panel code calculations vs measurements Effect in Blade Design parameter: Cl/Cd -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp ORE-XFOIL UoS-XFOIL* DTU-EllipSys Test5 Rey=9đ106 Ti3 ( 0.24% ) -5 0 5 10 15 0 20 40 60 80 100 120 140 160 180 Alpha Cl/Cd Exp ORE-XFOIL UoS-XFOIL* DTU-EllipSys Test7 Rey=15đ106 Ti3 ( 0.33% )
  24. 24. FP7-ENERGY-2013-1/ n° 608396 Blind test, main conclusion – cl/cd largelydetermines the optimal aerodynamicdesign – importance of boundarylayer transition on cl/cd has been confirmed: – eN method performs well at all Reynolds numbers – Correlationbased transitionmethod (state of the art in many CFD tools!) deficient at high Reynolds numbers 1) – New version of correlation based transitionmodel is developed with better performance 2) 1) Niels N. Sørensen et alPrediction of airfoil performance at high Reynolds numbersEFMC 2014, Copenhagen 17-20 Sept 2014 2) S. Colonia et al Calibration of the g equation transition model for High Reynolds flows at low Mach To be published at the Science of Matking Torque, October 2016
  25. 25. FP7-ENERGY-2013-1/ n° 608396 25 List of Contents q Introduction into the project q Design of AVATAR Reference Wind Turbine q Aerodynamics at high Reynoldsnumbers • Airfoil measurements in pressurized DNW-HDG tunnel q Aero-elasticity of large turbines at yaw • BEM versus free vortex wake aerodynamic modelling1) 19-09-16 1) Acknowledgement K. Boorsma, S. Voutsinas
  26. 26. ECN Aero-module 26 June 17, 2010 • ECN Aero Module: One code with aero-models of different degrees of fidelity coupled to same structural solver (PHATAS/FOCUS) • BEM and AWSM (Free and prescribed vortex wake model) • Straightforward comparison of different aerodynamic models with same input • Results are shown of azimuthal variation of induced velocity at yawed conditions: • AWSM: Physical modelling of azimuthal variation of induced velocity at yaw • 2 BEM implementations: Conventional Glauert model 1) and ECN developed root vortex model 2) and 3) 1) H. Glauert, A general theory for Autogyro ARC-R-M,1111, 1926 2) J.G. Schepers An engineering model for yawed conditions, developed on basis of wind tunnel measurements, AIAA-99-0039 37th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 1999 3) J.G. Schepers ‘Engineering models in wind energy aerodynamics,’ TUDelft PhD thesis ISBN: 9789461915078, 2012
  27. 27. INNWIND.EU turbine Results at 30 degrees yaw (30% and 95% span) 27 § Induced velocity variation at 30% span: • 90 degrees azimuth: • Root vortex effects clearlyapparent in vortex wake methods (AWSM and AWSM-Prescribed) • Conventional Glauert model for induced velocity variation deficient • Root vortex effects predicted well by ECN-rv § Induced velocity variation at 30% span: Effect of root vortex at outer blade part in ECN-rv will be reduced
  28. 28. FP7-ENERGY-2013-1/ n° 608396 28 Summary • AVATAR is an EU FP7 projects which aims to validate, improve and calibrate aerodynamic models for 10MW+ turbines with and without flow devices and with and without aero-elastic effects • Several (wind tunnel) measurements have been taken which have helped to validate and improve (sub) models relevant for 10MW+ turbines • Models of different degrees of fidelity are evaluated on two 10 MW reference wind turbines: – AVATAR low induction turbine with special aerodynamic challenges – INNWIND.EU conventional induction turbine
  29. 29. FP7-ENERGY-2013-1/ n° 608396 29 Summary • The amount of results from the AVATAR project is far too much to present in 15-20 minutes • AVATAR led to several model improvements and lessons learned e.g: – Transition modelling • Original correlation based transitionmodels deficient at high Reynolds numbers • Updated version of correlation basedtransition models has become available • Guidelines on the employment of transition (and turbulence) models formulated – Improved predictions for low Mach conditions in compressible codes – Improved models for thick airfoils – Improved models for flow devices (flaps, vortex generators, root spoilers) – First possibilities for rotor model improvements identified (many more will follow…) – Improved calculational efficiency and reduced time to set-up calculation – Expansion/integration of codes (e.g. coupling of aero-elastic models to free vortex wake methods) – Best practice guidelines on grid resolutions and temporal resolution • Need for vortex corrections at some grid topologies with limited domain size – Calibration of engineering methods from CFD not straightforward • Techniques are developed and tested to derive lifting line variables from CFD – Many more improvements and lessons learned will follow!
  30. 30. FP7-ENERGY-2013-1/ n° 608396 30 Dissemination of results – All technical deliverables are public: http://www.eera-avatar.eu/publications-results-and-links/ – Web based validation platform is under development (http://windbench.net/avatar) – AVATAR session at IRPWIND-EERA Joint Wind R&D conference, September 19, Amsterdam, the Netherlands – Introduction (Gerard Schepers, ECN) – Advanced Aerodynamic Modelling (Niels Sørensen, DTU) – Flow device aerodynamics (Alvaro Gonzalez, CENER) – Roadmap for further engineering modelling improvements (Gerard Schepers, ECN) – AVATAR session at Science of Making Torque, October 7, Munich Germany – 5 Oral presentations – Latest results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines (Gerard Schepers (ECN) et al) – CFD code comparison for 2D airfoil flows (Niels Sørensen (DTU) et al) – Experimental benchmark and code validation for airfoils equipped with passive vortex generators (Daniel Baldacchino (TUDelft) et al) – Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments (M. Manolesos (NTUA) et al) – Results of the AVATAR project for the validation of 2D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap (Carlos Fereira (TUDelft) et al) – Introduction to 7 posters
  31. 31. Consortium FP7-ENERGY-2013-1/ n° 608396 Coordinator: Partners in alphabetical order:
  32. 32. This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grand agreement No FP7-ENERGY-2013-1/n° 608396 . Thank you for your attention

×