Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
(cos (x+a), sin (x+a))



                                 (cos x, sin x)




                         a
                 ...
(cos (x+a), sin (x+a))



                                  (cos x, sin x)



                                           s...
(cos (x+a), sin (x+a))
Imagine rotating
angle x (with a
staying constant)
                                        (cos x, ...
(cos (x+a), sin (x+a))



                             (cos x, sin x)


   Let’s see it before doing
                     ...
(cos (x+a), sin (x+a))                    (cos x, sin x)



                                                   new slope

...
(cos (x+a), sin (x+a))



                                     (cos x, sin x)



Now let’s prove that the angle between
  ...
(cos (x+a), sin (x+a))

                          180-x-a
      x+a-90
                                    (cos x, sin x)
...
(cos (x+a), sin (x+a))

                          180-x-a

                                                 (cos x, sin x)...
(cos (x+a), sin (x+a))



                                         (cos x, sin x)




                          a
        ...
(cos (x+a), sin (x+a))
The angle between the dashed green lines is:

             (x+a-90)+(90-x-a/2)=a/2         (cos x, ...
Upcoming SlideShare
Loading in …5
×

Trigonometry Pdf

2,598 views

Published on

Published in: Technology, Business
  • Be the first to comment

Trigonometry Pdf

  1. 1. (cos (x+a), sin (x+a)) (cos x, sin x) a x
  2. 2. (cos (x+a), sin (x+a)) (cos x, sin x) slope a x of line is g(x) (cos (x+a), -sin (x+a))
  3. 3. (cos (x+a), sin (x+a)) Imagine rotating angle x (with a staying constant) (cos x, sin x) around the circle. We need to show slope that the angle a x of line is between the g(x) dashed green lines is constant. That shows the slope stays the same. (cos (x+a), -sin (x+a))
  4. 4. (cos (x+a), sin (x+a)) (cos x, sin x) Let’s see it before doing slope any calculations… a x of line is g(x) Let’s increase x just a little bit! (cos (x+a), -sin (x+a))
  5. 5. (cos (x+a), sin (x+a)) (cos x, sin x) new slope a old slope x Even with a larger x, (cos (x+a), -sin (x+a)) we see the slope stays the same!
  6. 6. (cos (x+a), sin (x+a)) (cos x, sin x) Now let’s prove that the angle between slope the dashed green lines stays constant!line is a x of g(x) Otherwise known as “hello, isoceles triangles!” (cos (x+a), -sin (x+a))
  7. 7. (cos (x+a), sin (x+a)) 180-x-a x+a-90 (cos x, sin x) 90 a x 90 180-x-a x+a-90 (cos (x+a), -sin (x+a))
  8. 8. (cos (x+a), sin (x+a)) 180-x-a (cos x, sin x) a x 90-x-a/2 180-x-a x+a x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))
  9. 9. (cos (x+a), sin (x+a)) (cos x, sin x) a x x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))
  10. 10. (cos (x+a), sin (x+a)) The angle between the dashed green lines is: (x+a-90)+(90-x-a/2)=a/2 (cos x, sin x) which is not dependent on x at all. a That’s what we wanted to show. x x+a-90 90-x-a/2 (cos (x+a), -sin (x+a))

×