Advertisement
Find the derivative of the function. Simplify if possible.and......pdf
Upcoming SlideShare
The chain ruleThe chain rule
Loading in ... 3
1 of 1
Advertisement

More Related Content

More from sales89(20)

Advertisement

Find the derivative of the function. Simplify if possible.and......pdf

  1. Find the derivative of the function. Simplify if possible. and...... y = 17 arctan(sqrt x) y = arcsin(4x + 2) y = arccos(e8x) h(t) = 5arccot(t) + 5arccot(1/t) Solution To find the derivative of ??? 1)y = 17 arctan sqrtx tan (y/17) = sqrtx Differentiating with respect to x, weget: sec^2 (y/17) * (1/17) dy/dx = (1/2sqrtx) dy/ dx = (17/2sqrtx){1+(tan(y/17))^2} dy/dx = (17/2sqrtx) {1+x} 2)y = arc sin(4x+2) Therefore siny = 4x+2 Differentiate both sides: cosy*dy/dx = d/dx(4x+2) cosy * dy/dx = 4 dy/dx = 4/cosy = 4/sin^2y = 4/(4x+2)^2 dy/dx = 4/(4x+2)^2. 3)y=arccos(e^8x). Therefore cosy = e^(8x). Differentiating both sodes, we get: -siny*dy/dx= d/dx{e^(8x)}. -siny*dy/dx = e^(8x)* d/dx(8x). -siny*dy/dx = 8e^(8x). dy/dx = 8e^(8x)* (1/-siny) dy/dx = -8e^(8x)/ (1-(cosy)^2) dy/dx = -8e^(8x)/{1- e^(16x)}, as (cosy)^2 = (e^(8x))^2.
Advertisement