SlideShare a Scribd company logo

Aluminum: Principled Scenario Exploration through Minimality

ICSE'13勉強会 http://qwik.jp/se-reading/9.html での論文紹介

1 of 7
Download to read offline
Aluminum: Principled Scenario
Exploration through Minimality
酒井 政裕
2013-07-09
ICSE2013 勉強会
The background image is from http://images-of-elements.com/.
The image is licensed under a Creative Commons Attribution 3.0 Unported License.
F1
by Tim Nelson, Salman Saghafi, Daniel J. Dougherty,
Kathi Fisler, Shriram Krishnamurthi @ ICSE 2013
背景
• 背景
– 高レベルの仕様記述に対して「シナリオ」(=具体例)を
探索・生成するAlloyなどのツール
– シナリオの利点
• システム設計者が、その設計の帰結、見落としていた制約、
代替的なデザインなどを検討するのを助ける
• 具体的なので分かりやすく、現実に対応させやすい。
• 論理学等に詳しくない、ドメインの専門家にも理解可能
• 課題
– 複数あるシナリオから、どんなシナリオをどんな順で
提示するべきか?
– 小さいシナリオはしばしば病的で、微妙な問題を明ら
かにすることが多い
– ⇒ 小さいシナリオから提示するように出来ないか?
F1
Alloyの例 F1
abstract sig Subject {}
sig Student extends Subject {}
sig Professor extends Subject {}
sig Class {
TAs: set Student,
instructor: one Professor
}
sig Assignment {
forClass: one Class,
submittedBy: some Student
}
pred PolicyAllowsGrading(s: Subject,
a: Assignment) {
s in a.forClass.TAs or
s in a.forClass.instructor
}
pred WhoCanGradeAssignments() {
some s : Subject | some a: Assignment |
PolicyAllowsGrading[s, a]
}
run WhoCanGradeAssignments for 3 コードと図は Aluminum: Principled Scenario Exploration through
Minimality (by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi
Fisler, Shriram Krishnamurthi) より抜粋
F1複数シナリオの列挙
図は Aluminum: Principled Scenario Exploration through Minimality (by
Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram
Krishnamurthi) より抜粋
…
Next
Next
Next
Alloy を変更し Aluminum を実装
機能
1. GenerateMin
– 極小なシナリオの生成・列挙
(関係からタプルを一つでも取り
除くと、制約を満たさなくなる)
2. Augment
– シナリオを、関係にタプルを追
加することでユーザが拡張
3. ConsistentTuples
– シナリオに対し、関係に追加可
能なタプルを計算
F1
シナリオ探索の
スタートポイント
余計なものを含ま
ない、シナリオの
本質に注目!
対話的探索!
「制約を追加して
再探索」という
コンテキストス
イッチを減らす
F1
図は Aluminum: Principled Scenario Exploration through Minimality (by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram
Krishnamurthi) より抜粋
Alloy
Aluminum
Next Next
Next Next
列挙の比較

Recommended

代数的実数とCADの実装紹介
代数的実数とCADの実装紹介代数的実数とCADの実装紹介
代数的実数とCADの実装紹介Masahiro Sakai
 
Introduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT EvaluationIntroduction to Max-SAT and Max-SAT Evaluation
Introduction to Max-SAT and Max-SAT EvaluationMasahiro Sakai
 
SAT/SMTソルバの仕組み
SAT/SMTソルバの仕組みSAT/SMTソルバの仕組み
SAT/SMTソルバの仕組みMasahiro Sakai
 
How a CDCL SAT solver works
How a CDCL SAT solver worksHow a CDCL SAT solver works
How a CDCL SAT solver worksMasahiro Sakai
 
SAT/SMT solving in Haskell
SAT/SMT solving in HaskellSAT/SMT solving in Haskell
SAT/SMT solving in HaskellMasahiro Sakai
 
DeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep LearningDeepXplore: Automated Whitebox Testing of Deep Learning
DeepXplore: Automated Whitebox Testing of Deep LearningMasahiro Sakai
 

More Related Content

More from Masahiro Sakai

Towards formal verification of neural networks
Towards formal verification of neural networksTowards formal verification of neural networks
Towards formal verification of neural networksMasahiro Sakai
 
関数プログラマから見たPythonと機械学習
関数プログラマから見たPythonと機械学習関数プログラマから見たPythonと機械学習
関数プログラマから見たPythonと機械学習Masahiro Sakai
 
Writing a SAT solver as a hobby project
Writing a SAT solver as a hobby projectWriting a SAT solver as a hobby project
Writing a SAT solver as a hobby projectMasahiro Sakai
 
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...Masahiro Sakai
 
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)萩野服部研究室 スキー合宿 2012 自己紹介(酒井)
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)Masahiro Sakai
 
自動定理証明の紹介
自動定理証明の紹介自動定理証明の紹介
自動定理証明の紹介Masahiro Sakai
 
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...Masahiro Sakai
 
“Design and Implementation of Generics for the .NET Common Language Runtime”他...
“Design and Implementation of Generics for the .NET Common Language Runtime”他...“Design and Implementation of Generics for the .NET Common Language Runtime”他...
“Design and Implementation of Generics for the .NET Common Language Runtime”他...Masahiro Sakai
 
Relaxed Dependency Analysis
Relaxed Dependency AnalysisRelaxed Dependency Analysis
Relaxed Dependency AnalysisMasahiro Sakai
 
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...Masahiro Sakai
 
自然言語をラムダ式で解釈する体系PTQのHaskell実装
自然言語をラムダ式で解釈する体系PTQのHaskell実装自然言語をラムダ式で解釈する体系PTQのHaskell実装
自然言語をラムダ式で解釈する体系PTQのHaskell実装Masahiro Sakai
 
Whole Program Paths 等の紹介@PLDIr#3
Whole Program Paths 等の紹介@PLDIr#3Whole Program Paths 等の紹介@PLDIr#3
Whole Program Paths 等の紹介@PLDIr#3Masahiro Sakai
 
Run-time Code Generation and Modal-ML の紹介@PLDIr#2
Run-time Code Generation and Modal-ML の紹介@PLDIr#2Run-time Code Generation and Modal-ML の紹介@PLDIr#2
Run-time Code Generation and Modal-ML の紹介@PLDIr#2Masahiro Sakai
 
Introduction to Categorical Programming (Revised)
Introduction to Categorical Programming (Revised)Introduction to Categorical Programming (Revised)
Introduction to Categorical Programming (Revised)Masahiro Sakai
 
Introduction to Categorical Programming
Introduction to Categorical ProgrammingIntroduction to Categorical Programming
Introduction to Categorical ProgrammingMasahiro Sakai
 
融合変換による最適化の理論的基盤と正当性 (2006-06-27)
融合変換による最適化の理論的基盤と正当性 (2006-06-27)融合変換による最適化の理論的基盤と正当性 (2006-06-27)
融合変換による最適化の理論的基盤と正当性 (2006-06-27)Masahiro Sakai
 
融合変換による最適化の理論的基盤と正当性 (2006-06-20)
融合変換による最適化の理論的基盤と正当性 (2006-06-20)融合変換による最適化の理論的基盤と正当性 (2006-06-20)
融合変換による最適化の理論的基盤と正当性 (2006-06-20)Masahiro Sakai
 
Ruby-GNOME2におけるGC問題
Ruby-GNOME2におけるGC問題Ruby-GNOME2におけるGC問題
Ruby-GNOME2におけるGC問題Masahiro Sakai
 
LLW2004 その場でどう書く - Haskell
LLW2004 その場でどう書く - HaskellLLW2004 その場でどう書く - Haskell
LLW2004 その場でどう書く - HaskellMasahiro Sakai
 
非正格関数に対して適用可能な融合変換
非正格関数に対して適用可能な融合変換非正格関数に対して適用可能な融合変換
非正格関数に対して適用可能な融合変換Masahiro Sakai
 

More from Masahiro Sakai (20)

Towards formal verification of neural networks
Towards formal verification of neural networksTowards formal verification of neural networks
Towards formal verification of neural networks
 
関数プログラマから見たPythonと機械学習
関数プログラマから見たPythonと機械学習関数プログラマから見たPythonと機械学習
関数プログラマから見たPythonと機械学習
 
Writing a SAT solver as a hobby project
Writing a SAT solver as a hobby projectWriting a SAT solver as a hobby project
Writing a SAT solver as a hobby project
 
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
RClassify: Classifying Race Conditions in Web Applications via Deterministic ...
 
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)萩野服部研究室 スキー合宿 2012 自己紹介(酒井)
萩野服部研究室 スキー合宿 2012 自己紹介(酒井)
 
自動定理証明の紹介
自動定理証明の紹介自動定理証明の紹介
自動定理証明の紹介
 
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...
“Adoption and Focus: Practical Linear Types for Imperative Programming”他の紹介@P...
 
“Design and Implementation of Generics for the .NET Common Language Runtime”他...
“Design and Implementation of Generics for the .NET Common Language Runtime”他...“Design and Implementation of Generics for the .NET Common Language Runtime”他...
“Design and Implementation of Generics for the .NET Common Language Runtime”他...
 
Relaxed Dependency Analysis
Relaxed Dependency AnalysisRelaxed Dependency Analysis
Relaxed Dependency Analysis
 
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
“Symbolic bounds analysis of pointers, array indices, and accessed memory reg...
 
自然言語をラムダ式で解釈する体系PTQのHaskell実装
自然言語をラムダ式で解釈する体系PTQのHaskell実装自然言語をラムダ式で解釈する体系PTQのHaskell実装
自然言語をラムダ式で解釈する体系PTQのHaskell実装
 
Whole Program Paths 等の紹介@PLDIr#3
Whole Program Paths 等の紹介@PLDIr#3Whole Program Paths 等の紹介@PLDIr#3
Whole Program Paths 等の紹介@PLDIr#3
 
Run-time Code Generation and Modal-ML の紹介@PLDIr#2
Run-time Code Generation and Modal-ML の紹介@PLDIr#2Run-time Code Generation and Modal-ML の紹介@PLDIr#2
Run-time Code Generation and Modal-ML の紹介@PLDIr#2
 
Introduction to Categorical Programming (Revised)
Introduction to Categorical Programming (Revised)Introduction to Categorical Programming (Revised)
Introduction to Categorical Programming (Revised)
 
Introduction to Categorical Programming
Introduction to Categorical ProgrammingIntroduction to Categorical Programming
Introduction to Categorical Programming
 
融合変換による最適化の理論的基盤と正当性 (2006-06-27)
融合変換による最適化の理論的基盤と正当性 (2006-06-27)融合変換による最適化の理論的基盤と正当性 (2006-06-27)
融合変換による最適化の理論的基盤と正当性 (2006-06-27)
 
融合変換による最適化の理論的基盤と正当性 (2006-06-20)
融合変換による最適化の理論的基盤と正当性 (2006-06-20)融合変換による最適化の理論的基盤と正当性 (2006-06-20)
融合変換による最適化の理論的基盤と正当性 (2006-06-20)
 
Ruby-GNOME2におけるGC問題
Ruby-GNOME2におけるGC問題Ruby-GNOME2におけるGC問題
Ruby-GNOME2におけるGC問題
 
LLW2004 その場でどう書く - Haskell
LLW2004 その場でどう書く - HaskellLLW2004 その場でどう書く - Haskell
LLW2004 その場でどう書く - Haskell
 
非正格関数に対して適用可能な融合変換
非正格関数に対して適用可能な融合変換非正格関数に対して適用可能な融合変換
非正格関数に対して適用可能な融合変換
 

Recently uploaded

オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 
20240227 完全に理解した LT 「mise いいよ mise」 / morishin
20240227 完全に理解した LT 「mise いいよ mise」 / morishin20240227 完全に理解した LT 「mise いいよ mise」 / morishin
20240227 完全に理解した LT 「mise いいよ mise」 / morishinMakoto Mori
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
00001_test_automation_portfolio_20240227
00001_test_automation_portfolio_2024022700001_test_automation_portfolio_20240227
00001_test_automation_portfolio_20240227ssuserf8ea02
 

Recently uploaded (8)

オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 
20240227 完全に理解した LT 「mise いいよ mise」 / morishin
20240227 完全に理解した LT 「mise いいよ mise」 / morishin20240227 完全に理解した LT 「mise いいよ mise」 / morishin
20240227 完全に理解した LT 「mise いいよ mise」 / morishin
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
 
00001_test_automation_portfolio_20240227
00001_test_automation_portfolio_2024022700001_test_automation_portfolio_20240227
00001_test_automation_portfolio_20240227
 

Aluminum: Principled Scenario Exploration through Minimality

  • 1. Aluminum: Principled Scenario Exploration through Minimality 酒井 政裕 2013-07-09 ICSE2013 勉強会 The background image is from http://images-of-elements.com/. The image is licensed under a Creative Commons Attribution 3.0 Unported License. F1 by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram Krishnamurthi @ ICSE 2013
  • 2. 背景 • 背景 – 高レベルの仕様記述に対して「シナリオ」(=具体例)を 探索・生成するAlloyなどのツール – シナリオの利点 • システム設計者が、その設計の帰結、見落としていた制約、 代替的なデザインなどを検討するのを助ける • 具体的なので分かりやすく、現実に対応させやすい。 • 論理学等に詳しくない、ドメインの専門家にも理解可能 • 課題 – 複数あるシナリオから、どんなシナリオをどんな順で 提示するべきか? – 小さいシナリオはしばしば病的で、微妙な問題を明ら かにすることが多い – ⇒ 小さいシナリオから提示するように出来ないか? F1
  • 3. Alloyの例 F1 abstract sig Subject {} sig Student extends Subject {} sig Professor extends Subject {} sig Class { TAs: set Student, instructor: one Professor } sig Assignment { forClass: one Class, submittedBy: some Student } pred PolicyAllowsGrading(s: Subject, a: Assignment) { s in a.forClass.TAs or s in a.forClass.instructor } pred WhoCanGradeAssignments() { some s : Subject | some a: Assignment | PolicyAllowsGrading[s, a] } run WhoCanGradeAssignments for 3 コードと図は Aluminum: Principled Scenario Exploration through Minimality (by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram Krishnamurthi) より抜粋
  • 4. F1複数シナリオの列挙 図は Aluminum: Principled Scenario Exploration through Minimality (by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram Krishnamurthi) より抜粋 … Next Next Next
  • 5. Alloy を変更し Aluminum を実装 機能 1. GenerateMin – 極小なシナリオの生成・列挙 (関係からタプルを一つでも取り 除くと、制約を満たさなくなる) 2. Augment – シナリオを、関係にタプルを追 加することでユーザが拡張 3. ConsistentTuples – シナリオに対し、関係に追加可 能なタプルを計算 F1 シナリオ探索の スタートポイント 余計なものを含ま ない、シナリオの 本質に注目! 対話的探索! 「制約を追加して 再探索」という コンテキストス イッチを減らす
  • 6. F1 図は Aluminum: Principled Scenario Exploration through Minimality (by Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram Krishnamurthi) より抜粋 Alloy Aluminum Next Next Next Next 列挙の比較
  • 7. • アルゴリズムは素直 – SATレベルでの制約の順次追加による極小化など – ただし、Symmetry-Breakingは極小化との相互作用の 問題から、Alloy(KodKod)と別のヒューリスティクス を採用 • 実験を通じた観察 – Alloyは特定の極小シナリオの上位のシナリオばかり を列挙し、それ以外を数百回以上も出さないことが 多い – それまでにユーザが探索をやめてしまい、重要・危 険なシナリオを見逃す危険性 – Aluminumはシナリオ空間の本質をユーザに早く見 せる • 性能への影響はあまりなし F1