Upcoming SlideShare
×

# Lect6 transformation2d

915 views

Published on

created by Sudipta mandal

1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

Views
Total views
915
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
44
0
Likes
1
Embeds 0
No embeds

No notes for slide

### Lect6 transformation2d

1. 1. Graphics 2D Geometric Transformations Sudipta Mondal sudipta.hit@gmail.com
2. 2. Contents BCET n Definition & Motivation n 2D Geometric Transformation n Translation n Rotation n Scaling n Matrix Representation n Homogeneous Coordinates n Matrix Composition n Composite Transformations n Pivot-Point Rotation n General Fixed-Point Scaling n Reflection and Shearing n Transformations Between Coordinate Systems
3. 3. Geometric Transformation BCET n Definition n Translation, Rotation, Scaling. n Motivation – Why do we need geometric transformations in CG? n As a viewing aid n As a modeling tool n As an image manipulation tool
4. 4. Example: 2D Geometric Transformation BCET Modeling Coordinates World Coordinates
5. 5. Example: 2D Scaling BCET Modeling Coordinates Scale(0.3, 0.3) World Coordinates
6. 6. Example: 2D Rotation BCET Modeling Coordinates Scale(0.3, 0.3) Rotate(-90) World Coordinates
7. 7. Example: 2D Translation BCET Modeling Coordinates Scale(0.3, 0.3) Rotate(-90) Translate(5, 3) World Coordinates
8. 8. Example: 2D Geometric Transformation BCET Modeling Coordinates Again? World Coordinates
9. 9. Example: 2D Geometric Transformation BCET Modeling Coordinates Scale Translate Scale Rotate Translate World Coordinates
10. 10. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ n y¢ = y ´ sinθ + y ´ cosθ n Shear n x ¢ = x + hx ´ y n y¢ = y + hy ´ x
11. 11. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ Transformations can be combined n y¢ = y ´ sinθ + y ´ cosθ (with simple algebra) n Shear n x ¢ = x + hx ´ y n y¢ = y + hy ´ x
12. 12. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ n y¢ = y ´ sinθ + y ´ cosθ n Shear x ¢ = x ´ sx n x ¢ = x + hx ´ y y¢ = y ´ sy n y¢ = y + hy ´ x
13. 13. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ n y¢ = y ´ sinθ + y ´ cosθ n Shear x ¢ = ((x ´ sx) ´ cosq - (y ´ sy) ´ sinq ) n x ¢ = x + hx ´ y y¢ = ((x ´ sx) ´ sinq + (y ´ sy) ´ cosq ) n y¢ = y + hy ´ x
14. 14. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ n y¢ = y ´ sinθ + y ´ cosθ n Shear x ¢ = ((x ´ sx) ´ cosq - (y ´ sy) ´ sinq ) + tx n x ¢ = x + hx ´ y y¢ = ((x ´ sx) ´ sinq + (y ´ sy) ´ cosq ) + ty n y¢ = y + hy ´ x
15. 15. Basic 2D Transformations BCET n Translation n x ¢ = x + tx n y¢ = y + ty n Scale n x¢ = x ´ sx n y¢ = y ´ sy n Rotation n x ¢ = x ´ cosθ - y ´ sinθ n y¢ = y ´ sinθ + y ´ cosθ n Shear x ¢ = ((x ´ sx) ´ cosq - (y ´ sy) ´ sinq ) + tx n x ¢ = x + hx ´ y y¢ = ((x ´ sx) ´ sinq + (y ´ sy) ´ cosq ) + ty n y¢ = y + hy ´ x
16. 16. Matrix Representation BCET n Represent a 2D Transformation by a Matrix éa b ù êc d ú ë û n Apply the Transformation to a Point x¢ = ax + by é x¢ ù é a b ù é x ù y¢ = cx + dy ê y ¢ú = êc d ú ê y ú ë û ë ûë û Transformation Point Matrix
17. 17. Matrix Representation BCET n Transformations can be combined by matrix multiplication é x¢ ù é a b ù ée f ù éi j ù é x ù ê y ¢ú = ê c d ú ê g ú êk l ú ê y ú hû ë ë û ë ûë ûë û Transformation Matrix Matrices are a convenient and efficient way to represent a sequence of transformations
18. 18. 2×2 Matrices BCET n What types of transformations can be represented with a 2×2 matrix? 2D Identity x¢ = x é x¢ ù é1 0ù é x ù ê y¢ú = ê0 1ú ê y ú y¢ = y ë û ë ûë û 2D Scaling x¢ = sx ´ x é x¢ ù é sx 0 ù é x ù y¢ = sy ´ y ê y¢ú = ê0 sy ú ê y ú ë û ë ûë û
19. 19. 2×2 Matrices BCET n What types of transformations can be represented with a 2×2 matrix? 2D Rotation x¢ = cos q ´ x - sin q ´ y é x¢ ù écosq - sin q ù é x ù ê y¢ú = êsin q cosq ú ê y ú y¢ = sin q ´ x + cosq ´ y ë û ë ûë û 2D Shearing x¢ = x + shx ´ y é x¢ ù é1 shx ù é x ù y¢ = shy ´ x + y ê y¢ú = ê shy 1ú ê y ú ë û ë ûë û
20. 20. 2×2 Matrices BCET n What types of transformations can be represented with a 2×2 matrix? 2D Mirror over Y axis x¢ = - x é x¢ ù é - 1 0ù é x ù y¢ = y ê y ¢ú = ê 0 1 úê yú ë û ë ûë û 2D Mirror over (0,0) x¢ = - x é x¢ ù é - 1 0ù é x ù y¢ = - y ê y ¢ú = ê 0 - 1ú ê y ú ë û ë ûë û
21. 21. 2×2 Matrices BCET n What types of transformations can be represented with a 2×2 matrix? 2D Translation x¢ = x + tx y¢ = y + ty NO!! Only linear 2D transformations can be Represented with 2x2 matrix
22. 22. Homogeneous Coordinates BCET nA point (x, y) can be re-written in homogeneous coordinates as (xh, yh, h). nThe homogeneous parameter h is a non- zero value such that: xh yh x= y= h h nWe can then write any point (x, y) as (hx, hy, h) nWe can conveniently choose h = 1 so that (x, y) becomes (x, y, 1)
23. 23. Why Homogeneous Coordinates? BCET nMathematicians commonly use homogeneous coordinates as they allow scaling factors to be removed from equations. nWe will see in a moment that all of the transformations we discussed previously can be represented as 3*3 matrices. nUsing homogeneous coordinates allows us use matrix multiplication to calculate transformations – extremely efficient!
24. 24. Homogeneous Translation BCET nThe translation of a point by (dx, dy) can be written in matrix form as: é1 0 dx ù ê0 1 dy ú ê ú ê0 ë 0 1ú û nRepresenting the point as a homogeneous column vector we perform the calculation as: é1 0 dxù éxù é1* x + 0* y + dx*1ù éx + dxù ê0 1 dyú ´êyú = ê0* x +1* y + dy*1ú = êy + dyú ê ú ê ú ê ú ê ú ê0 0 1 ú ê1 ú ê 0* x + 0* y +1*1 ú ë 1 ú ë û ë û ë û ê û
25. 25. 2D Translation BCET n 2D translation can be represented by a 3×3 matrix n Point represented with homogeneous coordinates é x¢ ù é1 0 tx ù é x ù x ¢ = x + tx ê y¢ú = ê0 1 ty ú ê y ú y¢ = y + ty ê ú ê úê ú ê1 ú ê0 0 1 ú ê1 ú ë û ë ûë û
26. 26. Basic 2D Transformations BCET n Basic 2D transformations as 3x3 Matrices é x¢ ù é1 0 tx ù é x ù é x¢ ù ésx 0 0 ù é x ù ê y¢ú = ê0 1 ty ú ê y ú ê y¢ú = ê0 sy 0ú ê y ú ê ú ê úê ú ê ú ê úê ú ê1 ú ê0 0 1 ú ê1 ú ë û ë ûë û ê1 ú ê0 0 1 ú ê1 ú ë û ë ûë û Translate Scale é x¢ ù écosq - sin q 0 ù é x ù é x¢ ù é1 shx 0 ù é x ù ê y¢ú = êsin q cosq 0ú ê y ú ê y¢ú = ê shy 1 0ú ê y ú ê ú ê úê ú ê ú ê úê ú ê1 ú ê0 ë û ë 0 1 ú ë1 ú ûê û ê1 ú ê0 0 1ú ê1 ú ë û ë ûë û Rotate Shear
27. 27. Homogeneous Coordinates BCET n Add a 3rd coordinate to every 2D point n (x, y, w) represents a point at location (x/w, y/w) n (x, y, 0) represents a point at infinity n (0, 0, 0) is not allowed y 2 (2, 1, 1) or (4, 2, 2) or (6, 3, 3) 1 x 1 2 Convenient Coordinate System to Represent Many Useful Transformations
28. 28. Linear Transformations BCET n Linear transformations are combinations of … n Scale é x¢ ù é a b 0 ù é x ù n Rotation ê y ¢ ú = êc d 0 ú ê y ú n Shear, and ê ú ê úê ú n Mirror ê w¢ú ê0 0 1 ú ê wû ë û ë ûë ú n Properties of linear transformations n Satisfies: T ( s p + s p ) = s T ( p ) + s T ( p ) 1 1 2 2 1 1 2 2 n Origin maps to origin n Lines map to lines n Parallel lines remain parallel n Ratios are preserved n Closed under composition
29. 29. Affine Transformations BCET n Affine transformations are combinations of n Linear transformations, and n Translations x¢ é ù é a bc ùéx ù ê y¢ ú = êd e f ú ê y ú ê ú ê úê ú ê w¢ú ê0 0 1 ú ê wú ë û ë ûë û n Properties of affine transformations n Origin does not map to origin n Lines map to lines n Parallel lines remain parallel n Ratios are preserved n Closed under composition
30. 30. Matrix Composition BCET n Transformations can be combined by matrix multiplication é x¢ ù æ é1 0 tx ù écos θ - sinθ 0 ù ésx 0 0ù ö é x ù ê y¢ ú = ç ê0 1 ty ú ê sinθ cosθ 0ú ê0 sy 0 ú ÷ ê y ú ê ú çê úê úê ú ÷ê ú ê w¢ú ç ê0 0 1 ú ê 0 ë û èë ûë 0 1 ú ê0 0 1 ú ÷ ê w ú ûë û øë û p¢ = T(tx, ty) R(q ) S(sx, sy) p n Efficiency with premultiplication n Matrix multiplication is associative p¢ = (T ´ (R ´ (S ´ p))) p¢ = (T ´ R ´ S) ´ p
31. 31. Matrix Composition BCET n Rotate by q around arbitrary point (a,b) n M = T(a, b) ´ R(θ ) ´ T(-a,-b) (a,b) n Scale by sx, sy around arbitrary point (a,b) n M = T(a, b) ´ S(sx, sy) ´ T(-a,-b) (a,b)
32. 32. Inverse Transformations BCET nTransformations can easily be reversed using inverse transformations é1 0 - dxù -1 ê ú é1 ù T = ê0 1 - dyú ês 0 0ú ê0 0 1 ú ë û êx ú -1 ê 1 ú S = 0 0 é cos sinq 0ù q ê sy ú -1 ê ú ê 0 0 1ú R = ê-sinq cos 0ú q ê ú ê 0 ë û ë 0 1úû
33. 33. Pivot-Point Rotation BCET (xr,yr) (xr,yr) (xr,yr) (xr,yr) Translate Rotate Translate T (xr , yr ) × R(q ) ×T (- xr ,-yr ) = R(xr , yr ,q ) é1 0 xr ù écosq - sinq 0ù é1 0 - xr ù écosq - sinq xr (1 - cosq ) + yr sinq ù ê0 1 y ú × êsinq cosq 0ú × ê0 1 - y ú = êsinq cosq y (1 - cosq ) - x sinq ú ê rú ê ú ê rú ê r r ú ê0 0 1 û ê 0 ë ú ë 0 1ú ê0 0 1 ú ê 0 û ë û ë 0 1 ú û
34. 34. General Fixed-Point Scaling BCET (xf,yf) (xf,yf) (xf,yf) (xf,yf) Translate Scale Translate T (xf , y f )× S(sx , sy )×T (- x f ,-y f ) = S(x f , y f , sx , sy ) é1 0 xf ù és x 0 0 ù é1 0 - x f ù és x 0 x f (1 - s x ) ù ê0 1 yf ú×ê0 sy 0 ú × ê0 1 - yf ú = ê0 sy y f (1 - s y ) ú ê ú ê ú ê ú ê ú ê0 ë 0 1 ú ê0 û ë 0 1 ú ê0 û ë 0 1 ú ê0 û ë 0 1 ú û
35. 35. Reflection BCET n Reflection with respect to the axis • x • y • xy é1 0 0ù é- 1 0 0ù é - 1 0 0ù ê0 - 1 0 ú ê 0 1 0ú ê 0 - 1 0ú ê ú ê ú ê ú ê0 0 1 ú ë û ê 0 0 1ú ë û ê0 ë 0 1ú û y 1 y y 1 1’ 1’ 2 3 2 3 3’ 2 3’ 2 x x 3 x 2’ 3’ 1 1’ 2 X AXIS Y AXIS XY AXIS
36. 36. Reflection BCET n Reflection with respect to a Line y é0 1 0 ù ê1 0 0 ú ê ú x ê0 0 1 ú ë û y=x ° n Clockwise rotation of 45 ® Reflection about the x axis ® Counterclockwise rotation of 45 ° y y 1 y 2 3 x x 2’ 3’ x 1’
37. 37. Shear BCET n Converted to a parallelogram y (1,1) y (0,1) é1 sh x 0ù (2,1) (3,1) ê0 1 0 ú ê ú (0,0) (1,0) x (0,0) (1,0) x ê0 0 1 ú ë û x’ = x + shx · y, y’ = y x (Shx=2) n Transformed to a shifted parallelogram (Y = Yref) y y (1,1) (1,1) (2,1) - sh x × y ref ù (0,1) é1 sh x ê0 1 ú (1/2,0) ê 0 ú x (0,0) (1,0) (3/2,0) x ê0 0 ë 1 ú û (0,-1) x’ = x + shx · (y-yref), y’ = y (Shx=1/2, yref=-1)
38. 38. Shear BCET n Transformed to a shifted parallelogram (X = Xref) (0,3/2) (1,2) é 1 0 0 ù y y ê sh 1 - sh y × x ref ú (1,1) ê y ú (0,1) ê 0 ú (0,1/2) (1,1) ë 0 1 û x x (0,0) (1,0) (-1,0) x’ = x, y’ = shy · (x-xref) + y (Shy=1/2, xref=-1)