Tongkat Ali Extraction Process

6,356 views

Published on

Published in: Technology, Business

Tongkat Ali Extraction Process

  1. 1. The Effect of Processing Parameters on the Phytochemical Yield of Eurycoma Longifolia Water Extract Yield SAIFUL IRWAN ZUBAIRI PMIFT, Grad B.E.M. B. Eng. (Chemical-Bioprocess) (Hons.), UTM M. Eng. (Bioprocess), UTM ROOM NO.: 2166, CHEMISTRY BUILDING, TEL. (OFF.): 03-89215828, FOOD SCIENCE PROGRAMME, CENTRE OF CHEMICAL SCIENCES AND FOOD TECHNOLOGY, UKM BANGI, SELANGOR
  2. 2. Outline <ul><li>Introduction </li></ul><ul><li>Tongkat Ali Background </li></ul><ul><li>Tongkat Ali Extraction </li></ul><ul><li>Experimental Design </li></ul><ul><li>Results and Discussion </li></ul><ul><li>Conclusion </li></ul>
  3. 3. Introduction <ul><li>Global Market growing at 15-20% growth </li></ul><ul><ul><li>USD 70 Billion market for nutraceuticals </li></ul></ul><ul><ul><li>USD 20 Billion market for phytomedicines </li></ul></ul><ul><li>RM4.55 Billion Malaysian Market </li></ul><ul><ul><li>80 % imported </li></ul></ul><ul><li>Tongkat Ali, Eurycoma Longifolia </li></ul><ul><ul><li>Anti-Malarial, Aphrodisiac, Energy Boosting </li></ul></ul><ul><ul><li>Malaysia-MIT Biotechnology Partnership Programme </li></ul></ul><ul><ul><li>MAVCAP RM20 million invested </li></ul></ul>
  4. 4. Standardisation Source: Prof Dr. Zhari Ismail, USM
  5. 5. Engineering Questions <ul><li>What are critical process parameters? </li></ul><ul><li>How do we maximise yield? </li></ul><ul><li>What are the economically optimal operating conditions? </li></ul><ul><li>How can we scale up the process? </li></ul><ul><li>How do we ensure active ingredient is present and in the correct amounts i.e. Standardisation </li></ul>
  6. 6. Processing Technology <ul><li>Based on traditional method </li></ul><ul><li>Food Technology oriented </li></ul><ul><li>Need to overcome </li></ul><ul><ul><li>Limited concentration in raw material </li></ul></ul><ul><ul><li>Solvent cost </li></ul></ul><ul><li>More data needed for </li></ul><ul><ul><li>Optimisation </li></ul></ul><ul><ul><li>Scale up </li></ul></ul>
  7. 7. Objective and Scope <ul><li>To develop a mathematical model for the mass transfer in Batch Solid Liquid Extraction of Tongkat Ali </li></ul><ul><li>Limited to </li></ul><ul><ul><li>Single stage water extracts </li></ul></ul><ul><ul><li>Eurycomanone as marker </li></ul></ul><ul><ul><li>Optimisation & Scale Up studies </li></ul></ul>
  8. 8. Tongkat Ali background <ul><li>Biology </li></ul><ul><li>Chemistry </li></ul><ul><li>Pharmacology </li></ul><ul><li>Analysis </li></ul>
  9. 9. Biology and Phytochemistry <ul><li>Biology </li></ul><ul><li>Part of Simaroubaceae family </li></ul><ul><li>Slow growing plant, 6-7 years to maturity </li></ul><ul><li>Phytochemistry </li></ul><ul><li>Quassinoids </li></ul><ul><ul><li>Major Component is Eurycomanone </li></ul></ul><ul><li>Alkaloids </li></ul><ul><ul><li>Highest concentration is 9-Methoxycanthin-6-one </li></ul></ul>
  10. 10. Alkaloids and Quassinoids 9-Methoxycanthin-6-one Eurycomanone Me Me OH CH 2 OH O O OH O HO OH O H H H R R R R R R S R S S
  11. 11. Pharmacology <ul><li>Traditionally </li></ul><ul><li>Used for anti-diarrhoea, postpartum tonic, for treating wounds, boils, and syphilis, anti-pyretic, anti-malarial, anti-ulcer, energy boosting, and aphrodisiac applications. </li></ul><ul><li>Root boiled and decoction drunk </li></ul><ul><li>Scientifically </li></ul><ul><li>Definite anti-malarial properties (Kardono et al, 1991) </li></ul><ul><li>Increases Testosterone production (Farzaturradiah, 1994) </li></ul><ul><li>Possibly improves sperm quality (Farzaturradiah, 1994) </li></ul><ul><li>Confirmed aphrodisiac effect as Viagra (Pihie, 2003) </li></ul><ul><li>Anti tumour properties (Itokawa, 1992) </li></ul>
  12. 12. Analysis <ul><li>Large number of compounds >20 </li></ul><ul><li>Difficulty in identification and quantification </li></ul><ul><li>Methods used include: </li></ul><ul><ul><li>Thin Layer Chromatography </li></ul></ul><ul><ul><li>UV-Vis Spectrophotometer </li></ul></ul><ul><ul><li>High Performance Liquid Chromatography </li></ul></ul><ul><ul><li>Liquid Chromatography/Mass Spectrometry </li></ul></ul>
  13. 13. Compounds <ul><li>Major quassinoids </li></ul><ul><ul><li>eurycomanone </li></ul></ul><ul><ul><li>longilactone </li></ul></ul><ul><ul><li>eurycomalactone </li></ul></ul><ul><ul><li>15  -acetyl-14-hydroxyklaineanone </li></ul></ul><ul><ul><li>6  -hydroxy-eurycomalactone </li></ul></ul><ul><ul><li>14,15  -dihydroxyklaineanone </li></ul></ul><ul><ul><li>1  ,12  ,15  -triacetyleurycomanone </li></ul></ul><ul><li>Major alkaloids </li></ul><ul><ul><li>9,10-dimethoxycanthin-6-one </li></ul></ul><ul><ul><li>10-hydroxy-9-methoxycanthin-6-one </li></ul></ul><ul><ul><li>11-hydroxy-10-methoxycanthin-6-one </li></ul></ul><ul><ul><li>5,9-dimethoxycanthin-6-one </li></ul></ul><ul><ul><li>9-methoxy-3-methylcanthin-5,6-dione </li></ul></ul>
  14. 14. Thin Layer Chromatography <ul><li>Solvent mixture based on Zhari et al (1999) </li></ul><ul><li>Only detects Alkaloids at 365nm </li></ul><ul><li>Does not detect quassinoids </li></ul>Rf=0.25 Light Florescent Green Rf=0.86 Light Florescent Yellow- Green Rf=0.69 Light Florescent Blue Rf=1.0 Light Florescent Blue
  15. 15. UV Vis Spectrophotometer <ul><li>Can be calibrated at 238 nm for extract concentration </li></ul>
  16. 16. High Performance Liquid Chromatography <ul><li>Based on Chan et al (1998) </li></ul><ul><li>First Peak is Eurycomanone, as confirmed by LC/MS </li></ul>
  17. 18. High Performance Liquid Chromatography
  18. 19. Tongkat Ali Extraction <ul><li>Process </li></ul><ul><li>Modelling </li></ul><ul><li>Optimisation </li></ul><ul><li>Scale Up </li></ul>
  19. 20. Process
  20. 21. Modelling <ul><li>In solid liquid extraction 4 phenomena occur: </li></ul><ul><li>The solvent diffuses into the herb particle </li></ul><ul><li>The solute is dissolved by the solvent </li></ul><ul><li>The solute diffuses to the surface of the herb particle </li></ul><ul><li>The solute is dissolved into the bulk solution </li></ul><ul><li>The extraction usually is dominated by 3 or 4 </li></ul>1 2 3 4 C s C * C f
  21. 22. Factors affecting extraction <ul><li>Solvent or solvent mixture utilised </li></ul><ul><li>Solvent to Raw Material Ratio </li></ul><ul><li>Raw Material Particle size </li></ul><ul><li>Temperature of Extraction </li></ul><ul><li>Duration of Extraction </li></ul><ul><li>Extraction vessel agitation speed </li></ul><ul><li>Extraction vessel volume </li></ul>
  22. 23. Mass Transfer Model <ul><li>Yield/Concentration = f (Ratio, Particle Size, Temperature, Duration, Agitation, Volume) </li></ul><ul><li>Can be done through:- </li></ul><ul><ul><li>Theoretical model </li></ul></ul><ul><ul><li>Response Surface Methodology </li></ul></ul><ul><ul><li>Artificial Neural Networks </li></ul></ul>
  23. 24. Theoretical Model <ul><li>Liquid Mass Transfer Coefficient, k L </li></ul><ul><li>Need to determine relationship between all factors </li></ul><ul><li>Mass Balance on vessel </li></ul><ul><li>Can be rewritten in a exponential form </li></ul><ul><li>Agitation increases Mass Transfer Coefficient, k L , to a maximum value </li></ul><ul><li>Diffusion of marker, D AB, in liquid is a critical factor as well </li></ul>
  24. 25. Theoretical Model <ul><li>Solid Diffusion, D s </li></ul><ul><li>If Solid Diffusion, D s , is the controlling factor, the mass transfer coefficient, k L , is determined by it </li></ul><ul><li>Based on work by Schwartzberg and Chao (1982) and Spiro and Selwood (1984) </li></ul><ul><li>Estimates of Solid Diffusion for plant material is around 10 -10 -10 -12 m 2 /s (Doulia et al, 2000) </li></ul>
  25. 26. Theoretical Model <ul><li>Other factors </li></ul><ul><li>Based on Spiro and Selwood (1984) </li></ul><ul><ul><li>Partition Coefficient, K </li></ul></ul><ul><ul><ul><li>Can estimate C* </li></ul></ul></ul><ul><ul><li>Weight Fraction of marker/extract, x 0 </li></ul></ul>
  26. 27. Response Surface Methodology <ul><li>Statistical-mathematical method </li></ul><ul><ul><li>Design of Experiment </li></ul></ul><ul><ul><li>Quantitative Data </li></ul></ul><ul><ul><li>Builds model </li></ul></ul><ul><ul><li>Optimises </li></ul></ul><ul><li>Good for selecting data </li></ul><ul><li>No prior knowledge required of process </li></ul><ul><li>May not be able to extrapolate well </li></ul><ul><li>Model limited to system studied </li></ul>
  27. 28. Artificial Neural Networks <ul><li>Model data with unknown structure </li></ul><ul><li>Good for complex models (de Villiers & Barnard, 1992) </li></ul><ul><li>Can get good results with proper data selection and treatment (Baratti et al, 1998) </li></ul><ul><li>Limited in extrapolation </li></ul>
  28. 29. Optimisation <ul><li>Method of choosing best operating point to maximise desired output i.e. yield or concentration or profit </li></ul><ul><li>Based on the function obtained from the Mass Transfer Modelling, it is likely that we will use </li></ul><ul><ul><li>One dimensional constrained optimisation, or </li></ul></ul><ul><ul><li>Multivariable constrained optimisation </li></ul></ul>
  29. 30. Scale Up <ul><li>Produce an identical process result at a larger production rate i.e. larger extraction vessel </li></ul><ul><li>Need defined relationship i.e. </li></ul><ul><li>Two key methods </li></ul><ul><ul><li>Basis </li></ul></ul><ul><ul><ul><li>Choose logical basis i.e. P/V </li></ul></ul></ul><ul><ul><ul><li>Scale up based on chosen basis </li></ul></ul></ul><ul><ul><li>Dimensional analysis (pi matrix/Buckingham method) </li></ul></ul><ul><ul><ul><li>Maintain geometrical similarity and identical relevant dimensionless numbers i.e. </li></ul></ul></ul><ul><ul><ul><ul><li>Sherwood and Schmidt for Mass Transfer </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Reynolds for fluid flow </li></ul></ul></ul></ul>
  30. 31. Dimensionless Numbers <ul><li>Reynolds Number </li></ul><ul><li>Sherwood Number </li></ul><ul><li>Schmidt Number </li></ul>
  31. 32. Experimental Design <ul><li>Preliminary Experiments (1 litre and 5 litre Glassware) </li></ul><ul><li>. Analytical Method development </li></ul><ul><li>. Determination of relevant parameters </li></ul><ul><li>. Fix value for particle size and agitation rate </li></ul><ul><li>Benchscale Experiments (5 litre Pressure vessel) </li></ul><ul><li>. Perform Experiments as per Experimental Design i.e. </li></ul><ul><li>General Factorial with 1 replicate </li></ul><ul><li>. Determine optimal point </li></ul><ul><li>. Central Composite Design around Optimal point </li></ul><ul><li>. Calculate D s , k, N Re and N Sc for all experiments </li></ul><ul><li>. Build mass transfer model </li></ul><ul><li>Scale Up Experiments (300 litre media tank) </li></ul><ul><li>. Base case on optimal point in Benchscale experiments </li></ul><ul><li>. Scale up agitation to match P/V </li></ul><ul><li>. Test scale up requirement for dimensionless number </li></ul><ul><li>similarity i.e. N Re and N Sc </li></ul><ul><li>. Build Scale up model if necessary </li></ul>
  32. 33. Preliminary Experiments <ul><li>Based on UV-Vis calibration to total extract weight </li></ul><ul><li>Ratio: 20:1, 30:1, 40:1, 50:1, 60:1 w/w </li></ul><ul><li>Duration: 30: 60: 90: 120: 150: 180: 210: 240: 270: 300 min </li></ul><ul><li>Particle size: Smooth (0.5 – 1.0 mm) and Rough (1 – 3.5 mm) </li></ul><ul><li>Volume: 1 dm 3 (Small Scale) and 5 dm 3 (Large Scale) </li></ul><ul><li>Sample: 10g (Small Scale) and 50g (Large Scale) </li></ul><ul><li>Total of 10 experiments for each scale with multiple samplings </li></ul>
  33. 34. Preliminary Experiments Hydrodistillation apparatus 5 litre small scale Soxhlet extraction apparatus 1 litre small scale
  34. 35. Preliminary Experiments Results Effect of extraction duration on yield Yield (%) versus time for same ratio (60:1g/g) at different scale and particle size
  35. 36. Preliminary Experiments Results Effect of extraction duration on yield Percent of extraction accomplished with time (large-scale sample with ratio of 20:1g/g for smooth particles)
  36. 37. Preliminary Experiments Results Effect of solvent ratio on yield Yield versus ratio for 1hr sample at different scales and particle sizes
  37. 38. Preliminary Experiments Results Extraction yield model Yield versus time for samples with the water to Tongkat Ali ratio of 60:1g/g
  38. 39. Preliminary Experiments Results Physical Parameters <ul><li>Density of Tongkat Ali Root </li></ul><ul><ul><li>Dry: 0.2g/ml </li></ul></ul><ul><ul><li>Wet: 0.6 g/ml </li></ul></ul><ul><li>UV Absorbance </li></ul><ul><ul><li>Max: approximately 220-240 nm </li></ul></ul><ul><li>Extract mass fraction of Tongkat Ali Root </li></ul><ul><ul><li>8-10 % w/w </li></ul></ul><ul><li>Fraction of Eurycomanone </li></ul><ul><ul><li>0.5% of extract w/w </li></ul></ul>
  39. 40. Preliminary Experiments Results Extraction Parameters <ul><li>K, partition coefficient </li></ul><ul><ul><li>0.9-1.3 (preliminary) </li></ul></ul><ul><li>k L , mass transfer coefficient </li></ul><ul><ul><li>Small Scale, Smooth particle 2 x10 -6 m/s </li></ul></ul><ul><ul><li>Small Scale, Rough particle 6 x10 -6 m/s </li></ul></ul><ul><ul><li>Large Scale, Smooth particle 2 x10 -6 m/s </li></ul></ul><ul><ul><li>Large Scale, Rough particle 6 x10 -6 m/s </li></ul></ul><ul><li>D s , Solid diffusion (Schwartzberg & Chao, 1984) </li></ul><ul><ul><li>Small Scale, Smooth particle 9 x 10 -12 m 2 /s </li></ul></ul><ul><ul><li>Small Scale, Rough particle 80 x 10 -12 m 2 /s </li></ul></ul><ul><ul><li>Large Scale, Smooth particle 9 x 10 -12 m 2 /s </li></ul></ul><ul><ul><li>Large Scale, Rough particle 80 x 10 -12 m 2 /s </li></ul></ul>
  40. 41. Preliminary Experiments Discussion <ul><li>Longer duration leads to higher yield </li></ul><ul><ul><li>max at 4 to 5 hours </li></ul></ul><ul><ul><li>85 % extracted within 30 min and 90% in 1 hr </li></ul></ul><ul><li>40:1 ratio best for Smooth and 50:1 ratio best for Rough particles </li></ul><ul><ul><li>Higher concentration gradient for mass transfer </li></ul></ul><ul><li>Similar yield for Small Scale and Large Scale extractions </li></ul><ul><li>Higher yield for smaller particle </li></ul><ul><ul><li>More mass transfer area </li></ul></ul><ul><ul><li>Lower solid diffusion factor </li></ul></ul><ul><li>k L and D S , affected by particle size more than ratio </li></ul><ul><ul><li>Need to revise calculation on new data </li></ul></ul>
  41. 42. Preliminary Experiments in Progress <ul><li>Other preliminary work in progress </li></ul><ul><ul><li>Fine tuning analysis method and apparatus </li></ul></ul><ul><ul><li>Calibration of Standard </li></ul></ul><ul><ul><li>Effect of agitation </li></ul></ul><ul><ul><li>Effect of particle size </li></ul></ul><ul><ul><li>Effect of Temperature </li></ul></ul><ul><ul><li>Temperature effect of marker degradation </li></ul></ul><ul><li>Optimal values of agitation and particle size will be used for benchscale experiments </li></ul>
  42. 43. Various particle sizes of Tongkat Ali raw material
  43. 44. Benchscale Experiments <ul><li>Pressurised 5/20 litre heated vessel with agitator </li></ul><ul><li>Temperature: 80  C, 90  C, 100  C, 110  C, 120  C </li></ul><ul><li>Ratio: 20:1, 30:1, 40:1, 50:1, 60:1 w/w </li></ul><ul><li>Duration: 30, 60, 90, 120, 150, 180, 210, 240, 270,300 min </li></ul><ul><li>Total of 25 randomised experiments with multiple samplings </li></ul><ul><li>2 replicates and repeated analysis of samples </li></ul><ul><li>Mass Transfer Model to be built and optimal parameters determined </li></ul><ul><li>Central Composite design around optimal point to confirm model validity </li></ul>
  44. 45. Expected Benchscale Results <ul><li>Mass Transfer Model </li></ul><ul><li>Surface Response Model </li></ul><ul><li>Optimal Operating Point </li></ul><ul><li>Properties </li></ul><ul><ul><li>Mass transfer coefficient, k L </li></ul></ul><ul><ul><li>Solid Diffusion , D S </li></ul></ul><ul><ul><li>Reynolds number, Re </li></ul></ul><ul><ul><li>Sherwood number, Sh </li></ul></ul><ul><ul><li>Schmidt number, Sc </li></ul></ul>
  45. 46. Scale Up Experiments <ul><li>500 litre Media Tank </li></ul><ul><li>Based on Optimal Operating point in Benchscale experiment </li></ul><ul><li>Experiment repeated at larger scale with central composite design around optimal point </li></ul>
  46. 47. 500 litre Media Tank for Scale up studies
  47. 48. Expected Scale up Results <ul><li>No significant difference in yield </li></ul><ul><li>Differences in duration due to heating process and mixing difference </li></ul><ul><li>Scale up relationship to be formed should there be a significance difference </li></ul>
  48. 49. Conclusion Future Work <ul><li>HPLC Calibration based on analysis from Universiti Sains Malaysia/FRIM </li></ul><ul><li>Determination of optimal particle size and agitation rate </li></ul><ul><li>Determination of the effects of temperature on extract degradation </li></ul><ul><li>The benchscale extraction studies </li></ul><ul><li>The scale up studies </li></ul>
  49. 50. Conclusion Recommendations <ul><li>To acquire chemical standards or independent calibrations as soon as possible rather than to develop their own standards </li></ul><ul><li>To develop a theoretical or empirical model of the process as soon as possible as well as to take into account variations caused by organic material </li></ul><ul><li>To investigate the effects of multiple stage extraction processes to reduce utility usage </li></ul><ul><li>To perform economic optimisations to determine optimal economic process parameters </li></ul><ul><li>To simulate the process on a batch simulator such as SuperPro Designer to perform economic evaluation of various design options </li></ul>
  50. 51. Work Plan X X X Scale up X X X X X X Benchscale X X X Preliminary 12 11 10 9 8 7 6 5 4 3 2 1 PhaseMonth 2004 X X X Defence and Publications X X X X X X Writing X X Experiments X X X Analysis of Data 12 11 10 9 8 7 6 5 4 3 2 1 PhaseMonth 2005
  51. 52. THANK YOU FOR YOUR KIND ATTENTION QUESTION AND ANSWER SESSION
  52. 53. Contribution <ul><li>Application of Engineering Methodology </li></ul><ul><li>Physical and chemical parameters </li></ul><ul><li>Optimal Extraction parameters </li></ul><ul><li>General Optimization and Scale up method for Malaysian Herbs </li></ul>

×