Kamal Choudhary, NIST]]>

Kamal Choudhary, NIST]]>

We present the results of a high-throughput, first principles search for topological materials based on identifying materials with band inversion induced by spin-orbit coupling. Out of the currently available 30000 materials in our database, we investigate more than 4507 non-magnetic materials having heavy atoms and low bandgaps. We compute the spillage between the spin-orbit and non-spin-orbit wave functions, resulting in more than 1699 high-spillage candidate materials. We demonstrate that in addition to Z2 topological insulators, this screening method successfully identifies many semimetals and topological crystalline insulators. Our approach is applicable to the investigation of disordered or distorted materials, because it is not based on symmetry considerations, and it can be extended to magnetic materials. After our first screening step, we use Wannier-interpolation to calculate the topological invariants and to search for band crossings in our candidate materials. We discuss some individual example materials, as well as trends throughout our dataset, that is available at JARVIS-DFT website: http://jarvis.nist.gov]]>

We present the results of a high-throughput, first principles search for topological materials based on identifying materials with band inversion induced by spin-orbit coupling. Out of the currently available 30000 materials in our database, we investigate more than 4507 non-magnetic materials having heavy atoms and low bandgaps. We compute the spillage between the spin-orbit and non-spin-orbit wave functions, resulting in more than 1699 high-spillage candidate materials. We demonstrate that in addition to Z2 topological insulators, this screening method successfully identifies many semimetals and topological crystalline insulators. Our approach is applicable to the investigation of disordered or distorted materials, because it is not based on symmetry considerations, and it can be extended to magnetic materials. After our first screening step, we use Wannier-interpolation to calculate the topological invariants and to search for band crossings in our candidate materials. We discuss some individual example materials, as well as trends throughout our dataset, that is available at JARVIS-DFT website: http://jarvis.nist.gov]]>

JARVIS-DFT]]>

JARVIS-DFT]]>

JARVIS-DFT database]]>

JARVIS-DFT database]]>

JARVIS NIST database and tools]]>

JARVIS NIST database and tools]]>

JARVIS-FF, JARVIS-DFT, and JARVIS-ML https://jarvis.nist.gov/]]>

JARVIS-FF, JARVIS-DFT, and JARVIS-ML https://jarvis.nist.gov/]]>

The Density functional theory section of JARVIS (JARVIS-DFT) consists of thousands of VASP based calculations for 3D-bulk, single layer (2D), nanowire (1D) and molecular (0D) systems. Most of the calculations are carried out with optB88vDW functional. JARVIS-DFT includes materials data such as: energetics, diffraction pattern, radial distribution function, band-structure, density of states, carrier effective mass, temperature and carrier concentration dependent thermoelectric properties, elastic constants and gamma-point phonons.]]>

The Density functional theory section of JARVIS (JARVIS-DFT) consists of thousands of VASP based calculations for 3D-bulk, single layer (2D), nanowire (1D) and molecular (0D) systems. Most of the calculations are carried out with optB88vDW functional. JARVIS-DFT includes materials data such as: energetics, diffraction pattern, radial distribution function, band-structure, density of states, carrier effective mass, temperature and carrier concentration dependent thermoelectric properties, elastic constants and gamma-point phonons.]]>

JARVIS (Joint Automated Repository for Various Integrated Simulations) is a repository designed to automate materials discovery using classical force-field, density functional theory, machine learning calculations and experiments. The Force-field section of JARVIS (JARVIS-FF) consists of thousands of automated LAMMPS based force-field calculations on DFT geometries. Some of the properties included in JARVIS-FF are energetics, elastic constants, surface energies, defect formations energies and phonon frequencies of materials. The Density functional theory section of JARVIS (JARVIS-DFT) consists of thousands of VASP based calculations for 3D-bulk, single layer (2D), nanowire (1D) and molecular (0D) systems. Most of the calculations are carried out with optB88vDW functional. JARVIS-DFT includes materials data such as: energetics, diffraction pattern, radial distribution function, band-structure, density of states, carrier effective mass, temperature and carrier concentration dependent thermoelectric properties, elastic constants and gamma-point phonons. The Machine-learning section of JARVIS (JARVIS-ML) consists of machine learning prediction tools, trained on JARVIS-DFT data. Some of the ML-predictions focus on energetics, heat of formation, GGA/METAGGA bandgaps, bulk and shear modulus. The ML webpage is visible to NIST employees only right now, but will be available publicly soon.]]>

JARVIS (Joint Automated Repository for Various Integrated Simulations) is a repository designed to automate materials discovery using classical force-field, density functional theory, machine learning calculations and experiments. The Force-field section of JARVIS (JARVIS-FF) consists of thousands of automated LAMMPS based force-field calculations on DFT geometries. Some of the properties included in JARVIS-FF are energetics, elastic constants, surface energies, defect formations energies and phonon frequencies of materials. The Density functional theory section of JARVIS (JARVIS-DFT) consists of thousands of VASP based calculations for 3D-bulk, single layer (2D), nanowire (1D) and molecular (0D) systems. Most of the calculations are carried out with optB88vDW functional. JARVIS-DFT includes materials data such as: energetics, diffraction pattern, radial distribution function, band-structure, density of states, carrier effective mass, temperature and carrier concentration dependent thermoelectric properties, elastic constants and gamma-point phonons. The Machine-learning section of JARVIS (JARVIS-ML) consists of machine learning prediction tools, trained on JARVIS-DFT data. Some of the ML-predictions focus on energetics, heat of formation, GGA/METAGGA bandgaps, bulk and shear modulus. The ML webpage is visible to NIST employees only right now, but will be available publicly soon.]]>

]]>

]]>

]]>

]]>