The Cost of Corrosion
Introduction to Corrosion
UPR15 du CNRS, Laboratoire des Interfaces et
Systèmes Electrochimique
Univ...
The Cost of CorrosionThe Cost of Corrosion
Italy GNPItaly GNP ≈≈ 10101212
Euro/yearEuro/year
Cost of corrosionCost of corr...
Corrosion cost
Corrosion cost
CAPEX = capital expenditure
Corrosion cost
OPEX = Operational expenditure
Corrosion cost
Corrosion cost
Corrosion cost
Introduction to corrosion
The metal or metal alloy dissolves in presence of water
For example Fe can dissolves as Fe2+
acc...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
i...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
i...
Application to corrosion
IiI = I ic + ia I
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
1000...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
i...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Application to corrosion
-1,0 -0,5 0,0 0,5 1,0
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
100000
1000000
V...
Corrosion on heterogeneous surface
Alliage AZ91
2
4
6
8
10
2
4
6
8
10
0
10
20
30
Z(µA/mm
2
)
Y
(m
m
)
X (mm)
Without biofilm : 0 mm/y
Z(µA/mm²)
X(mm)
Y(m
m
)
Localized co...
CONCLUSIONSCONCLUSIONS
The corrosion is an heterogeneous phenomena
The corrosion is a non steady phenomena
Tribollet egaf9
Upcoming SlideShare
Loading in …5
×

Tribollet egaf9

373 views

Published on

EGAF 9 Laboratorio de Gestión de Activos UC Rodrigo Pascual

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
373
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Tribollet egaf9

  1. 1. The Cost of Corrosion Introduction to Corrosion UPR15 du CNRS, Laboratoire des Interfaces et Systèmes Electrochimique Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France Bernard TRIBOLLET
  2. 2. The Cost of CorrosionThe Cost of Corrosion Italy GNPItaly GNP ≈≈ 10101212 Euro/yearEuro/year Cost of corrosionCost of corrosion ≈≈ 3 103 101010 €/year, i.e.€/year, i.e. ≈≈ 500 €/person/year500 €/person/year
  3. 3. Corrosion cost
  4. 4. Corrosion cost CAPEX = capital expenditure
  5. 5. Corrosion cost OPEX = Operational expenditure
  6. 6. Corrosion cost
  7. 7. Corrosion cost
  8. 8. Corrosion cost
  9. 9. Introduction to corrosion The metal or metal alloy dissolves in presence of water For example Fe can dissolves as Fe2+ according to the reaction: Fe → Fe2+ + 2 e- This electrochemical reaction is depending of the electrode potential V This dependance is given by the Tafel’s law : )Vbexp(ki FeFe= The metal is isolated on an electrical point of view, then the produced electrons must be consumed by another reaction. This other reaction could be the water or the oxygen reduction can be considered: H2O+e- ↔1/2 H2 + OH- or O2 + 4 H2O + 4 e- → 4 OH- The corresponding Tafel’s law is: )Vbexp(ki 22 OO −−=
  10. 10. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 i=10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  11. 11. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 ic =10 -4 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  12. 12. Application to corrosion IiI = I ic + ia I -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr Densitédecourant(A/cm 2 ) Potentiel (ηs )
  13. 13. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia =ic ic =10 -4 exp(-40ηs ) ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  14. 14. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 ic =10 -5 exp(-40ηs ) ia =10 -4 exp(20ηs ) icorr = ia =ic Vcorr Densitédecourant(A/cm 2 ) Potentiel (ηs )
  15. 15. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -4 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  16. 16. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -3 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  17. 17. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr icorr = ia = ic ia = 10 -3 ic =10 -2 exp(-40ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  18. 18. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr ic = 10 -3 icorr = ia = ic ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  19. 19. Application to corrosion -1,0 -0,5 0,0 0,5 1,0 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000 1000000 Vcorr ic = 10 -2icorr = ia = ic ia =10 -3 exp(20ηs ) Densitédecourant(A/cm 2 ) Potentiel (ηs )
  20. 20. Corrosion on heterogeneous surface Alliage AZ91
  21. 21. 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) Without biofilm : 0 mm/y Z(µA/mm²) X(mm) Y(m m ) Localized corrosion : biocorrosionLocalized corrosion : biocorrosion 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 5 days biofilm, before scratch : 0 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) With biofilm, immediately after scratch : 2.1 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 24 h after scratch : 2.9 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 72 h after scratch : 0.9 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) 96 h after scratch : 1.1 mm/y 2 4 6 8 10 2 4 6 8 10 0 10 20 30 Z(µA/mm 2 ) Y (m m ) X (mm) After biocide injection : 0 mm/y Z(µA/mm²) X(mm) Y(m m )
  22. 22. CONCLUSIONSCONCLUSIONS The corrosion is an heterogeneous phenomena The corrosion is a non steady phenomena

×