Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Inteligencia Artificial  Interpretación semántica  <ul><li>Primavera 2009 </li></ul><ul><li>profesor: Luigi Ceccaroni </li...
CFG recognition using difference lists <ul><li>An efficient implementation of CFGs can be obtained by making use of  diffe...
CFG recognition using difference lists <ul><li>Think of the first list as  what needs to be consumed  (or if you prefer: t...
CFG recognition using difference lists <ul><li>The sentence we are interested in is the difference between the contents of...
CFG recognition using difference lists <ul><li>If we bear the idea of  consuming something, and leaving something behind  ...
CFG recognition using difference lists <ul><li>The idea underlying the way we handle the words is similar.  </li></ul><ul>...
CFG recognition using difference lists <ul><li>How do we use such grammars? Here's how to recognize sentences:  </li></ul>...
CFG recognition using difference lists <ul><li>Similarly, to generate all the sentences in the grammar, we ask  </li></ul>...
CFG recognition using difference lists <ul><li>And we generate all the noun phrases in the grammar as follows:  </li></ul>...
Formalismos de unificación <ul><li>La unificación se usa como mecanismo básico de composición entre constituyentes en  gra...
Análisis gramatical con unificación <ul><li>Gramática </li></ul><ul><ul><li>(1) oració (X,Y)  :- gnom(X,Z), gver(Z,Y) </li...
Análisis gramatical con unificación <ul><li>(7) el(1,2)  </li></ul><ul><li>(8) gos(2,3)  </li></ul><ul><li>(9) borda(3,4) ...
Análisis gramatical con unificación <ul><li>oració(1,4) </li></ul><ul><ul><li>(R1) (X      1, Y    4)  por unificación <...
Análisis gramatical con unificación <ul><li>art(1,U), nom(U,Z), gver(Z,4) </li></ul><ul><ul><li>(R4) aplicada a art(1,U) <...
Análisis gramatical con unificación <ul><li>nom(2,Z), gver(Z,4) </li></ul><ul><ul><li>(R5) </li></ul></ul><ul><li>gos(2,Z)...
Análisis gramatical con unificación <ul><li>gver(3,4) </li></ul><ul><ul><li>(R3) </li></ul></ul><ul><li>ver(3,4) </li></ul...
Análisis semántico <ul><li>Consiste en construir una representación de las frases en algún sistema formal. </li></ul><ul><...
Estrategias de análisis <ul><li>Dos maneras de plantear la interpretación semántica: </li></ul><ul><ul><li>Secuencial (sin...
Interpretación secuencial <ul><li>Problemas de ambigüedad </li></ul><ul><ul><li>Es posible que haya más de una interpretac...
Interpretación paralela <ul><li>Principal problema </li></ul><ul><ul><li>No se sabe si la interpretación sintáctica es cor...
Sistema de representación <ul><li>El sistema de representación tiene que permitir: </li></ul><ul><ul><li>Manejar cuantific...
Sistema de representación <ul><li>Los sistemas que no se basan en la sintaxis para la interpretación suelen utilizar siste...
Sistema de representación <ul><li>Ejemplos </li></ul><ul><ul><li>Los nombres propios corresponden a constantes. </li></ul>...
Sistema de representación <ul><li>La representación consiste normalmente en un árbol de análisis y una función de composic...
La representación del significado: ejemplo <ul><li>entrada : </li></ul><ul><ul><li>Qui dirigeix el PSOE? </li></ul></ul><u...
La representación del significado <ul><li>En la anterior forma lógica aparecen 4 tipos diferentes de información: </li></u...
Posibles representaciones del significado <ul><li>Lógica de predicados de primer orden </li></ul><ul><li>Otros formalismos...
Representaciones basadas en lógica <ul><li>Un vocabulario de  predicados  de los que hay que indicar la aridad (el número ...
Semántica y forma lógica <ul><li>Semantics = theories of meaning </li></ul><ul><li>Introduction of a level of context-inde...
Semántica y forma lógica <ul><li>Precisely defining the notions of  semantics  and  meaning  is surprisingly difficult. </...
Semántica y forma lógica <ul><ul><li>This fire  means  someone camped here last night . </li></ul></ul><ul><li>In this exa...
Semántica y forma lógica <ul><ul><li>“ Amble” means to walk slowly . </li></ul></ul><ul><li>This defines the  meaning  of ...
Semántica y forma lógica <ul><ul><li>A guard at the airport:  “Do you know what gate you are going to?” </li></ul></ul><ul...
Semántica y forma lógica <ul><ul><li>“ Do you know what gate you are going to?” </li></ul></ul><ul><li>This sentence then ...
Semántica y forma lógica <ul><li>Separating sentence  meaning  from sentence  usage  is complex, but there are many advant...
Semántica y forma lógica <ul><li>We use the term  meaning  in a context-independent sense. </li></ul><ul><li>We use the te...
Semántica y forma lógica <ul><li>The process of mapping a sentence to its logical form is called  semantic interpretation ...
Semántica y forma lógica <ul><li>Syntactic analysis </li></ul><ul><li>semantic interpretation  </li></ul><ul><li>Logical f...
Interpretación semántica: función de composición <ul><li>Interpretación a través de evaluaciones lambda: </li></ul><ul><li...
Función de composición: ejemplo
Función de composición: ejemplo
Gramáticas de cláusulas definidas (DCGs) <ul><li>Las DCGs permiten escribir gramáticas en forma de programas como, por eje...
Gramáticas de cláusulas definidas (DCGs): sintaxis <ul><li>Las reglas usan variables para pasarse información, hacer las c...
Gramáticas de cláusulas definidas (DCGs): sintaxis <ul><li>Para ejecutar una DCG se llama al símbolo principal de la gramá...
Gramáticas de cláusulas definidas (DCGs): ejemplo <ul><li>analisis(X,Y):- asercion(X,Y). </li></ul><ul><li>asercion --> sn...
What are definite clause grammars? <ul><li>Definite Clause Grammars (DCGs) are convenient ways to represent grammatical re...
DCGs <ul><li>A little grammar written as a DCG:  </li></ul><ul><li>s --> np, vp. np --> det, n. vp --> v, np. vp --> v. de...
DCGs <ul><li>For example, to find out whether  a woman shoots a man  is a sentence, we pose the query:  </li></ul><ul><ul>...
DCGs <ul><li>Similarly, to generate all the sentences in the grammar, we pose the query:  </li></ul><ul><ul><li>s(X,[]). <...
DCGs <ul><li>We generate all the noun phrases in the grammar as follows:  </li></ul><ul><ul><li>np(X,[]). </li></ul></ul><...
DCGs <ul><li>The Prolog language can translate this notation into the kinds of difference lists discussed before.  </li></...
DCGs <ul><li>To see what Prolog translates DCG rules into: </li></ul><ul><ul><li>let Prolog consult the rules of this DCG,...
DCGs <ul><li>Similarly, if you pose the query: </li></ul><ul><ul><li>listing(np) </li></ul></ul><ul><li>you will get:  </l...
DCGs <ul><li>To get a complete listing of the translations of all the rules, simply type: </li></ul><ul><ul><li>listing. <...
Separating rules and lexicon <ul><li>By separating rules and lexicon we mean that we want to eliminate all mentioning of i...
Separating rules and lexicon <ul><li>We are going to separate the rules form the lexicon.  </li></ul><ul><li>That is, we a...
Separating rules and lexicon <ul><li>Here is an example of a (very simple) lexicon.  </li></ul><ul><li>Lexical entries are...
Separating rules and lexicon <ul><li>A simple grammar that could go with this lexicon will be very similar to the basic DC...
Separating rules and lexicon <ul><ul><ul><ul><li>Grammar: </li></ul></ul></ul></ul><ul><ul><ul><ul><li>np - - > det, n. vp...
Separating rules and lexicon <ul><li>Consider the new  det  rule: </li></ul><ul><ul><ul><li>det --> [Word], {lex(Word, det...
Separating rules and lexicon <ul><li>With our present lexicon, this means that  Word  must be matched either with the word...
Separating rules and lexicon <ul><li>This explains the  how  of separating rules from lexicon, but it doesn't explain the ...
Separating rules and lexicon <ul><li>The answer is  yes!  for a theoretical reason: </li></ul><ul><ul><li>Arguably rules s...
Separating rules and lexicon <ul><li>Now, our little lexicon, with its simple  lex  entries, is a toy.  </li></ul><ul><li>...
Separating rules and lexicon <ul><li>Our  lex  entries give only the  syntactical category  of each word. </li></ul><ul><l...
Separating rules and lexicon <ul><li>That is,  grammars  should be thought of as separate entities which can access the in...
Grammar 1: a trivial grammar for a fragment of language <ul><li>s    np, vp.  % A sentence (s) is a noun phrase (np) plus...
Grammar 1: a trivial grammar for a fragment of language <ul><li>lex(the, det).  % ‘the’ is a determiner </li></ul><ul><li>...
Sentences for Grammar 1 <ul><li>mary loves john </li></ul><ul><li>the woman eats the apple </li></ul><ul><li>the man sings...
Grammar 2: restrictions in argument selection <ul><li>s     np, vp.   </li></ul><ul><li>compl([ ])    [ ]. </li></ul><ul...
Grammar 2: restrictions in argument selection <ul><li>v(A)    [Word], {lex(Word, v, A)}. </li></ul><ul><li>name    [Word...
Grammar 2: restrictions in argument selection <ul><li>lex(piensa, v, [arg(en)]). </li></ul><ul><li>lex(está, v, [arg(en)])...
Grammar 2: restrictions in argument selection <ul><li>lex(un, det). </li></ul><ul><li>lex(mary, name). </li></ul><ul><li>l...
Sentences for Grammar 2 <ul><li>mary piensa en john </li></ul><ul><li>john habla con mary </li></ul><ul><li>john ríe </li>...
Extension of Grammar 2 <ul><li>John habla de Clara con Mary </li></ul><ul><li>Needed modifications: </li></ul><ul><ul><li>...
Grammar 3: logical representation of sentences <ul><li>s(F)    np(S), v(S, X, F), compl(X). </li></ul><ul><li>compl([ ]) ...
Grammar 3: logical representation of sentences <ul><li>v(S,A,F)    [Word], {lex(Word, v, S, A, F)}. </li></ul><ul><li>nam...
Grammar 3: logical representation of sentences <ul><li>lex(clara, name). </li></ul><ul><li>lex(maria, name). </li></ul><ul...
Grammar 3: logical representation of sentences <ul><li>lex(el, det).  </li></ul><ul><li>lex(un, det). </li></ul><ul><li>le...
Grammar 3: logical representation of sentences <ul><li>lex(ríe, v, S, [ ], reir(S)). </li></ul><ul><li>lex(piensa, v, S, [...
Sentences for Grammar 3 <ul><li>unary predicate  (ríe, v, S, [ ], reir(S)). </li></ul><ul><li>binary predicate  (piensa, v...
Prolog input and output <ul><li>analysis(F, X, [ ]):- s(F, X, [ ]). </li></ul><ul><li>| ?- analysis(F, [juan, está, en, ba...
Prolog input and output <ul><li>| ?- analysis(F, [el, libro, está, en, barcelona], [ ]). </li></ul><ul><li>F = locativo(li...
Prolog input and output <ul><li>| ?- analysis(F, [el, hombre, habla, de, juan, con, maria], [ ]). </li></ul><ul><li>F = co...
Prolog input and output <ul><li>| ?- analysis(F, [el, profesor, piensa, en, un, libro], [ ]). </li></ul><ul><li>F = pensar...
Grammar 4: quantification  <ul><li>It exists X and X is a  libro : </li></ul><ul><ul><ul><ul><li>el libro = e(X, libro(X))...
Grammar 4: quantification  <ul><li>el libro cae = e(X, and(libro(X), cae(X))) </li></ul><ul><li>Juan piensa en el libro = ...
Grammar 4: quantification  <ul><li>lex(el,det,K,S1,S2,e(K,and(S1,S2))). </li></ul><ul><li>lex(un,det,K,S1,S2,e(K,and(S1,S2...
Grammar 4: quantification  <ul><li>compl([ ],S,S)    [ ]. </li></ul><ul><li>compl([arg(X,K) | Y],S1,S)    p(X), np(K,S2,...
Prolog input and output <ul><li>| ?- analysis(F,[el,hombre,ríe],[ ]). </li></ul><ul><li>F = e(_A,and(hombre(_A),reir(_A)))...
Prolog input and output <ul><li>| ?- analysis(F,[el,hombre,habla,de,juan,con,maria],[ ]). </li></ul><ul><li>F = e(_A,and(h...
Prolog input and output <ul><li>| ?- analysis(F,[todo,libro,esta,en,barcelona],[ ]). </li></ul><ul><li>F = a(_A,implies(li...
Extension of Grammar 4 <ul><li>El hombre bueno: </li></ul><ul><ul><ul><ul><li>e(X, and(hombre(X), bueno(X))) </li></ul></u...
Grammar 5: semantic constraints <ul><li>Argument selection: </li></ul><ul><ul><li>*Juan lee el hombre </li></ul></ul><ul><...
Nouns’ semantic categories <ul><li>lex(clara, name, human). </li></ul><ul><li>lex(maria, name, human). </li></ul><ul><li>l...
Nouns’ semantic categories <ul><li>lex(libro, n, K, libro(K), inanimate).  </li></ul><ul><li>lex(hombre, n, K, hombre(K), ...
Verbs’ semantic categories <ul><li>lex(piensa, v, S, [arg(en,O)], pensar_en(S,O), sem(human, [X])). </li></ul><ul><li>lex(...
Grammar 5: semantic constraints <ul><li>v(S,A,F,sem)    [Word],{lex(Word,v,S,A,F,sem)}. </li></ul><ul><li>name(Word,sem) ...
Grammar 5: semantic constraints <ul><li>compl([ ],S,S,[ ])    [ ]. </li></ul><ul><li>compl([arg(X,K) | Y],S1,S,[sem | sem...
Upcoming SlideShare
Loading in …5
×

Inteligencia artificial

485 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Inteligencia artificial

  1. 1. Inteligencia Artificial Interpretación semántica <ul><li>Primavera 2009 </li></ul><ul><li>profesor: Luigi Ceccaroni </li></ul>
  2. 2. CFG recognition using difference lists <ul><li>An efficient implementation of CFGs can be obtained by making use of difference lists: a sophisticated Prolog technique. </li></ul><ul><li>The key idea underlying difference lists is to represent the information about grammatical categories not as a single list, but as the difference between two lists. </li></ul><ul><li>For example, instead of representing a woman shoots a man as [a,woman,shoots,a,man] we might represent it as the pair of lists </li></ul><ul><li>[a,woman,shoots,a,man] [ ].   </li></ul>
  3. 3. CFG recognition using difference lists <ul><li>Think of the first list as what needs to be consumed (or if you prefer: the input list ), and the second list as what we should leave behind (or: the output list ). </li></ul><ul><li>Viewed from this (rather procedural) perspective the difference list </li></ul><ul><li>[a,woman,shoots,a,man] [ ].  </li></ul><ul><li>represents the sentence a woman shoots a man because it says: If I consume all the symbols on the left, and leave behind the symbols on the right, I have the sentence I am interested in. </li></ul>
  4. 4. CFG recognition using difference lists <ul><li>The sentence we are interested in is the difference between the contents of the two lists. </li></ul><ul><li>Difference representations are not unique. </li></ul><ul><li>In fact, we could represent a woman shoots a man in infinitely many ways. </li></ul><ul><li>For example, we could also represent it as </li></ul><ul><li>[a,woman,shoots,a,man,ploggle,woggle]  [ploggle,woggle]. </li></ul><ul><li>Again the point is: if we consume all the symbols on the left, and leave behind the symbols on the right, we have the sentence we are interested in. </li></ul>
  5. 5. CFG recognition using difference lists <ul><li>If we bear the idea of consuming something, and leaving something behind in mind, we obtain the following recognizer (Prolog notation): </li></ul><ul><li>  </li></ul><ul><li>The s rule says: I know that the pair of lists X and Z represents a sentence if (1) I can consume X and leave behind a Y, and the pair   X and Y represents a noun phrase, and (2) I can then go on to consume Y leaving Z behind , and the pair Y Z represents a verb phrase . </li></ul>s(X,Z) :- np(X,Y), vp(Y,Z).   np(X,Z) :- det(X,Y), n(Y,Z).   vp(X,Z) :-  v(X,Y), np(Y,Z).   vp(X,Z) :-  v(X,Z). det([the|W],W). det([a|W],W).   n([woman|W],W). n([man|W],W).   v([shoots|W],W).
  6. 6. CFG recognition using difference lists <ul><li>The idea underlying the way we handle the words is similar. </li></ul><ul><li>The code </li></ul><ul><li>n([man|W],W). </li></ul><ul><li>means we are handling man as the difference between [man|W] and W. </li></ul><ul><li>Intuitively, the difference between what I consume and what I leave behind is precisely the word man . </li></ul>
  7. 7. CFG recognition using difference lists <ul><li>How do we use such grammars? Here's how to recognize sentences: </li></ul><ul><ul><li>s([a,woman,shoots,a,man],[]). </li></ul></ul><ul><ul><li>yes </li></ul></ul><ul><li>This asks whether we can get an s by consuming the symbols in [a,woman,shoots,a,man], leaving nothing behind. </li></ul>
  8. 8. CFG recognition using difference lists <ul><li>Similarly, to generate all the sentences in the grammar, we ask </li></ul><ul><li>s(X,[]). </li></ul><ul><li>This asks: what values can you give to X, such that we get an s by consuming the symbols in X, leaving nothing behind? </li></ul><ul><li>The queries for other grammatical categories also work the same way. </li></ul><ul><li>For example, to find out if a woman is a noun phrase we ask: </li></ul><ul><li>np([a,woman],[]). </li></ul>
  9. 9. CFG recognition using difference lists <ul><li>And we generate all the noun phrases in the grammar as follows: </li></ul><ul><li>np(X,[]). </li></ul><ul><li>It has to be admitted that this recognizer is not as easy to understand, at least at first, and it's a pain having to keep track of all those difference list variables. </li></ul><ul><li>This is where DCGs come in. </li></ul>
  10. 10. Formalismos de unificación <ul><li>La unificación se usa como mecanismo básico de composición entre constituyentes en gramáticas lógicas . </li></ul><ul><li>Història: </li></ul><ul><ul><li>Q-Systems (Colmerauer, 1972) </li></ul></ul><ul><ul><li>Prolog (Colmerauer, 1973) </li></ul></ul><ul><ul><li>Gramàtiques de Metamorfosi (Colmerauer, 1975) </li></ul></ul><ul><ul><li>Gramàtiques de Clàusules Definides (DCGs) (Pereira, Warren, 1980) </li></ul></ul>
  11. 11. Análisis gramatical con unificación <ul><li>Gramática </li></ul><ul><ul><li>(1) oració (X,Y) :- gnom(X,Z), gver(Z,Y) </li></ul></ul><ul><ul><li>(2) gnom(X,Y) :- art(X,Z), nom(Z,Y) </li></ul></ul><ul><ul><li>(3) gver(X,Y) :- ver(X,Y) </li></ul></ul><ul><li>Lexicón </li></ul><ul><ul><li>(4) art(X,Y) :- el(X,Y) </li></ul></ul><ul><ul><li>(5) nom(X,Y) :- gos(X,Y) </li></ul></ul><ul><ul><li>(6) ver(X,Y) :- borda(X,Y) </li></ul></ul>
  12. 12. Análisis gramatical con unificación <ul><li>(7) el(1,2) </li></ul><ul><li>(8) gos(2,3) </li></ul><ul><li>(9) borda(3,4) </li></ul><ul><li>Frase a analizar: oració(1,4) </li></ul>el gos borda 1 2 3 4
  13. 13. Análisis gramatical con unificación <ul><li>oració(1,4) </li></ul><ul><ul><li>(R1) (X  1, Y  4) por unificación </li></ul></ul><ul><li>gnom (1,Z), gver(Z,4) </li></ul><ul><ul><li>(R2) aplicada a gnom(1,Z) </li></ul></ul><ul><li>art(1,U), nom(U,Z), gver(Z,4) </li></ul>el gos borda 1 2 3 4
  14. 14. Análisis gramatical con unificación <ul><li>art(1,U), nom(U,Z), gver(Z,4) </li></ul><ul><ul><li>(R4) aplicada a art(1,U) </li></ul></ul><ul><li>el(1,U), nom(U,Z), gver(Z,4) </li></ul><ul><ul><li>(R7) (U  2) </li></ul></ul><ul><li>el(1,2), nom(2,Z), gver(Z,4) </li></ul><ul><li>nom(2,Z), gver(Z,4) </li></ul>el gos borda 1 2 3 4
  15. 15. Análisis gramatical con unificación <ul><li>nom(2,Z), gver(Z,4) </li></ul><ul><ul><li>(R5) </li></ul></ul><ul><li>gos(2,Z), gver(Z,4) </li></ul><ul><ul><li>(R8) (Z  3) </li></ul></ul><ul><li>gos(2,3), gver(3,4) </li></ul><ul><li>gver(3,4) </li></ul>el gos borda 1 2 3 4
  16. 16. Análisis gramatical con unificación <ul><li>gver(3,4) </li></ul><ul><ul><li>(R3) </li></ul></ul><ul><li>ver(3,4) </li></ul><ul><ul><li>(R6) </li></ul></ul><ul><li>borda(3,4) </li></ul><ul><ul><li>(R9): Fin </li></ul></ul>el gos borda 1 2 3 4
  17. 17. Análisis semántico <ul><li>Consiste en construir una representación de las frases en algún sistema formal. </li></ul><ul><li>En general es un problema intratable. </li></ul><ul><li>Se simplifica suponiendo que la semántica de una frase se pueda construir a partir de la semántica de sus partes: semántica compositiva . </li></ul><ul><li>Algunas características del lenguaje se tienen que tratar a parte: referencias, omisiones, contexto … </li></ul>
  18. 18. Estrategias de análisis <ul><li>Dos maneras de plantear la interpretación semántica: </li></ul><ul><ul><li>Secuencial (sintáctica -> semántica) </li></ul></ul><ul><ul><li>Paralela (sintáctica + semántica) </li></ul></ul>
  19. 19. Interpretación secuencial <ul><li>Problemas de ambigüedad </li></ul><ul><ul><li>Es posible que haya más de una interpretación sintáctica. </li></ul></ul><ul><ul><li>Hay que considerarlas todas, para poder comprobar sucesivamente cuáles son las semánticamente posibles. </li></ul></ul><ul><li>Principal ventaja </li></ul><ul><ul><li>El análisis semántico parte de un análisis sintáctico correcto. </li></ul></ul>
  20. 20. Interpretación paralela <ul><li>Principal problema </li></ul><ul><ul><li>No se sabe si la interpretación sintáctica es correcta hasta el final. </li></ul></ul><ul><li>Principal ventaja </li></ul><ul><ul><li>Poder descartar interpretaciones sintácticas correctas (o parcialmente correctas) que no tengan interpretación semántica asociada. </li></ul></ul><ul><li>Las reglas sintácticas incluyen la información semántica asociada. </li></ul><ul><ul><li>Se obtiene como resultado un árbol de análisis y una o varias interpretaciones. </li></ul></ul>
  21. 21. Sistema de representación <ul><li>El sistema de representación tiene que permitir: </li></ul><ul><ul><li>Manejar cuantificación, predicación, negación, modalidad (creencias) </li></ul></ul><ul><ul><li>Resolver la ambigüedad tanto léxica (polisemia) como sintáctica </li></ul></ul><ul><ul><li>Manejar inferencias (herencia, razonamiento por omisión) </li></ul></ul><ul><ul><ul><li>Importante a la hora de resolver problemas que involucren el contexto o el conocimiento del dominio. </li></ul></ul></ul>
  22. 22. Sistema de representación <ul><li>Los sistemas que no se basan en la sintaxis para la interpretación suelen utilizar sistemas tipo ontologías. </li></ul><ul><li>Por lo general, se utiliza una variedad de la lógica de primer orden adecuada al dominio de aplicación. </li></ul><ul><li>El elemento básico de representación es el lexema: raíz de un grupo de palabras que son diferentes formas de “la misma palabra” (ej.: ir, ido, yendo). </li></ul>
  23. 23. Sistema de representación <ul><li>Ejemplos </li></ul><ul><ul><li>Los nombres propios corresponden a constantes. </li></ul></ul><ul><ul><li>Los verbos intransitivos a predicados unarios: </li></ul></ul><ul><ul><li>Juan ríe ríe(juan) </li></ul></ul><ul><ul><li>Los verbos transitivos a predicados de aridad superior: </li></ul></ul><ul><ul><li>Juan lee el Quijote lee(juan, quijote) </li></ul></ul><ul><ul><li>Los nombres genéricos a predicados sobre variables: </li></ul></ul><ul><ul><li>El hombre hombre(X) </li></ul></ul><ul><ul><li>Los adjetivos a predicados unarios: </li></ul></ul><ul><ul><li>La casa grande grande(X) ∧ casa(X) </li></ul></ul>
  24. 24. Sistema de representación <ul><li>La representación consiste normalmente en un árbol de análisis y una función de composición que construye la interpretación de los elementos asociados. </li></ul><ul><li>sem S = f S (sem NP , sem VP ) </li></ul><ul><li>sem NP = f NP (sem ART , sem N ) </li></ul><ul><li>sem ART = f ART (sem el) </li></ul>S NP NAME Adrià VP V menja NP ART N bacallà el
  25. 25. La representación del significado: ejemplo <ul><li>entrada : </li></ul><ul><ul><li>Qui dirigeix el PSOE? </li></ul></ul><ul><li>forma lògica: </li></ul><ul><li>(pregunta </li></ul><ul><li>(referent (X)) </li></ul><ul><li>(X instancia (X, persona) </li></ul><ul><ul><ul><li>(el1 (Y instancia(Y, partit_polític) </li></ul></ul></ul><ul><ul><ul><ul><ul><li>nom(Y, &quot;PSOE&quot;)) </li></ul></ul></ul></ul></ul><ul><ul><ul><li>(Z instancia(Z, dirigir) </li></ul></ul></ul><ul><ul><ul><ul><ul><li>present(Z) </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>valor_prop(Z, agent, X) </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>valor_prop(Z, pacient,Y))))) </li></ul></ul></ul></ul></ul>
  26. 26. La representación del significado <ul><li>En la anterior forma lógica aparecen 4 tipos diferentes de información: </li></ul><ul><ul><li>Estructura lógica </li></ul></ul><ul><ul><li>Contenido conceptual (semántico) </li></ul></ul><ul><ul><li>Indicación de los actos del discurso </li></ul></ul><ul><ul><li>Anotaciones pragmáticas </li></ul></ul><ul><li>El formalismo de representación debería proporcionar una capacidad expresiva suficiente para garantizar la descripción de estos 4 tipos de información. </li></ul>
  27. 27. Posibles representaciones del significado <ul><li>Lógica de predicados de primer orden </li></ul><ul><li>Otros formalismos lógicos </li></ul><ul><li>Ontologías </li></ul>
  28. 28. Representaciones basadas en lógica <ul><li>Un vocabulario de predicados de los que hay que indicar la aridad (el número de argumentos y su tipo) </li></ul><ul><li>Un vocabulario de constantes y variables . </li></ul><ul><li>Un conjunto de conectores lógicos . </li></ul><ul><li>Un vocabulario de funciones de las que hay que indicar la aridad </li></ul><ul><li>Un conjunto de cuantificadores que actúan sobre los predicados que pueden ser cuantificados. </li></ul>
  29. 29. Semántica y forma lógica <ul><li>Semantics = theories of meaning </li></ul><ul><li>Introduction of a level of context-independent meaning called the logical form . </li></ul><ul><ul><li>It can be produced directly from the syntactic structure of a sentence. </li></ul></ul><ul><ul><li>It does not contain the results of any analysis that requires interpretation of the sentence in context. </li></ul></ul>
  30. 30. Semántica y forma lógica <ul><li>Precisely defining the notions of semantics and meaning is surprisingly difficult. </li></ul><ul><ul><li>The terms are used for several different purposes in natural and technical usage. </li></ul></ul><ul><ul><li>There is a use of the verb mean that has nothing to do with language: </li></ul></ul><ul><ul><li>This fire means someone camped here last night . </li></ul></ul>
  31. 31. Semántica y forma lógica <ul><ul><li>This fire means someone camped here last night . </li></ul></ul><ul><li>In this example, the fire is evidence for (or implies) the conclusion. </li></ul><ul><li>The meaning we are interested in is not this one. </li></ul><ul><li>It is closer to the usage when defining a word. </li></ul>
  32. 32. Semántica y forma lógica <ul><ul><li>“ Amble” means to walk slowly . </li></ul></ul><ul><li>This defines the meaning of a word in terms of other words. </li></ul><ul><li>We are interested in specifying meaning without having to refer back to natural language itself. </li></ul><ul><li>But even if we can do this, defining a notion of sentence meaning is difficult. </li></ul>
  33. 33. Semántica y forma lógica <ul><ul><li>A guard at the airport: “Do you know what gate you are going to?” </li></ul></ul><ul><li>If we interpret this as asking whether we know where we are going, we answer yes . </li></ul><ul><li>But the response can be based on a misunderstanding, if the guard then asks: </li></ul><ul><ul><li>“ Which gate is it?” </li></ul></ul>
  34. 34. Semántica y forma lógica <ul><ul><li>“ Do you know what gate you are going to?” </li></ul></ul><ul><li>This sentence then appears to mean different things in different contexts. </li></ul><ul><li>Can we define a notion of sentence meaning that is independent of context? </li></ul><ul><li>Is there a level at which this sentence has a single meaning, but may be used for different purposes? </li></ul>
  35. 35. Semántica y forma lógica <ul><li>Separating sentence meaning from sentence usage is complex, but there are many advantages, primarily modularity . </li></ul><ul><li>If sentences have no context-independent meaning, then we may not be able to separate: </li></ul><ul><ul><li>the study of language </li></ul></ul><ul><ul><li>the study of general human reasoning and context </li></ul></ul>
  36. 36. Semántica y forma lógica <ul><li>We use the term meaning in a context-independent sense. </li></ul><ul><li>We use the term usage for the context-dependent aspects. </li></ul><ul><li>The representation of context-independent meaning is called the logical form . </li></ul>
  37. 37. Semántica y forma lógica <ul><li>The process of mapping a sentence to its logical form is called semantic interpretation . </li></ul><ul><li>The process of mapping the logical form to the final knowledge representation language is called contextual interpretation . </li></ul>
  38. 38. Semántica y forma lógica <ul><li>Syntactic analysis </li></ul><ul><li>semantic interpretation </li></ul><ul><li>Logical form (ROJA1 <LA b1 PELOTA>) </li></ul><ul><li>contextual interpretation </li></ul><ul><li>Final representation Roja(BO73) </li></ul>S NP VP V es ADJP ART N pelota la roja
  39. 39. Interpretación semántica: función de composición <ul><li>Interpretación a través de evaluaciones lambda: </li></ul><ul><li>(lambda (x) (. . .)) = </li></ul><ul><li>= (  (x) (. . .)) </li></ul><ul><li>Gramática: </li></ul><ul><li>Oracio  GN FV (2 1) </li></ul><ul><li>GN  np (1) </li></ul><ul><li>FV  vi (1) </li></ul><ul><li>Fv  vt GN (1 2) </li></ul><ul><li>Lexicón: </li></ul><ul><li>Pere  np, pere </li></ul><ul><li>Maria  np, maria </li></ul><ul><li>riu  vi, (  (x) (riu(x)) </li></ul><ul><li>estima  vt , ((  (x) (  (y), estima(y, x)))) </li></ul>
  40. 40. Función de composición: ejemplo
  41. 41. Función de composición: ejemplo
  42. 42. Gramáticas de cláusulas definidas (DCGs) <ul><li>Las DCGs permiten escribir gramáticas en forma de programas como, por ejemplo, Prolog. </li></ul><ul><li>Prolog es un lenguaje de reglas que usa razonamiento hacia atrás como método de resolución. </li></ul><ul><li>Se define una sintaxis especial que permite diferenciar los elementos gramaticales de los procedimientos que se usan para tener en cuenta el contexto. </li></ul>
  43. 43. Gramáticas de cláusulas definidas (DCGs): sintaxis <ul><li>Las reglas usan variables para pasarse información, hacer las comprobaciones que exige la gramática o construir un resultado. </li></ul><ul><li>Se puede introducir código Prolog, entre llaves: </li></ul><ul><li>aaa(W) --> [W], bbb(W), {number(W)} </li></ul>
  44. 44. Gramáticas de cláusulas definidas (DCGs): sintaxis <ul><li>Para ejecutar una DCG se llama al símbolo principal de la gramática con dos parámetros: una lista con las palabras de la frase y una lista vacía: </li></ul><ul><li>frase([el,gat,menja,bacalla],[]) </li></ul>
  45. 45. Gramáticas de cláusulas definidas (DCGs): ejemplo <ul><li>analisis(X,Y):- asercion(X,Y). </li></ul><ul><li>asercion --> sn, verb,compl. </li></ul><ul><li>compl --> []. </li></ul><ul><li>compl --> prep,sn. </li></ul><ul><li>compl--> sn. </li></ul><ul><li>sn--> npr. </li></ul><ul><li>sn--> det,n. </li></ul><ul><li>verb--> [W],{verbo(W)}. </li></ul><ul><li>npr--> [W],{npropio(W)}. </li></ul><ul><li>n--> [W],{nombre(W)}. </li></ul><ul><li>det--> [W],{determ(W)}. </li></ul><ul><li>prep--> [W],{prepo(W)}. </li></ul><ul><li>npropio(clara). </li></ul><ul><li>npropio(maria). </li></ul><ul><li>npropio(barcelona). </li></ul><ul><li>nombre(hombre). </li></ul><ul><li>nombre(profesor). </li></ul><ul><li>nombre(libro). </li></ul><ul><li>determ(un). </li></ul><ul><li>determ(el). </li></ul><ul><li>verbo(esta). </li></ul><ul><li>verbo(rie). </li></ul><ul><li>verbo(piensa). </li></ul><ul><li>verbo(habla). </li></ul><ul><li>verbo(lee). </li></ul><ul><li>prepo(en). </li></ul><ul><li>prepo(con). </li></ul><ul><li>prepo(de). </li></ul>
  46. 46. What are definite clause grammars? <ul><li>Definite Clause Grammars (DCGs) are convenient ways to represent grammatical relationships for various parsing applications. </li></ul><ul><li>They can be used for natural language work, for creating formal command and programming languages. </li></ul><ul><li>Quite simply, they are a nice notation for writing grammars that hides the underlying difference list variables. </li></ul>
  47. 47. DCGs <ul><li>A little grammar written as a DCG: </li></ul><ul><li>s --> np, vp. np --> det, n. vp --> v, np. vp --> v. det --> [the]. det --> [a]. n --> [woman]. n --> [man]. v --> [shoots]. </li></ul><ul><li>How do we use this DCG? In fact, we use it in exactly the same way as we used the difference list recognizer. </li></ul>
  48. 48. DCGs <ul><li>For example, to find out whether a woman shoots a man is a sentence, we pose the query: </li></ul><ul><ul><li>s([a,woman,shoots,a,man],[]). </li></ul></ul><ul><li>That is, just as in the difference list recognizer, we ask whether we can get an s by consuming the symbols in [a,woman,shoots,a,man], leaving nothing behind. </li></ul>
  49. 49. DCGs <ul><li>Similarly, to generate all the sentences in the grammar, we pose the query: </li></ul><ul><ul><li>s(X,[]). </li></ul></ul><ul><li>This asks what values we can give to X, such that we get an s by consuming the symbols in X, leaving nothing behind. </li></ul><ul><li>Moreover, the queries for other grammatical categories also work the same way. For example, to find out if a woman is a noun phrase we pose the query: </li></ul><ul><ul><li>np([a,woman],[]). </li></ul></ul>
  50. 50. DCGs <ul><li>We generate all the noun phrases in the grammar as follows: </li></ul><ul><ul><li>np(X,[]). </li></ul></ul><ul><li>Quite simply, this DCG is a difference list recognizer! </li></ul><ul><li>That is, DCG notation is essentially syntactic sugar: user friendly notation that lets us write grammars in a natural way. </li></ul>
  51. 51. DCGs <ul><li>The Prolog language can translate this notation into the kinds of difference lists discussed before. </li></ul><ul><li>So we have the best of both worlds: </li></ul><ul><ul><li>a nice simple notation for working with </li></ul></ul><ul><ul><li>the efficiency of difference lists </li></ul></ul>
  52. 52. DCGs <ul><li>To see what Prolog translates DCG rules into: </li></ul><ul><ul><li>let Prolog consult the rules of this DCG, then if you pose the query: </li></ul></ul><ul><ul><ul><li>listing(s) </li></ul></ul></ul><ul><ul><li>you will get the response: </li></ul></ul><ul><ul><ul><li>s(A,B) :-     np(A,C),     vp(C,B). </li></ul></ul></ul><ul><li>This is what Prolog has translated s --> np,vp into. </li></ul><ul><li>Note that this is exactly the difference list rule we used in the recognizer. </li></ul>
  53. 53. DCGs <ul><li>Similarly, if you pose the query: </li></ul><ul><ul><li>listing(np) </li></ul></ul><ul><li>you will get: </li></ul><ul><ul><li>np(A,B) :-     det(A,C),     n(C,B). </li></ul></ul><ul><li>This is what Prolog has translated np --> det,n into. </li></ul><ul><li>Again (apart from the choice of variables) this is the difference list rule we used in the recognizer. </li></ul>
  54. 54. DCGs <ul><li>To get a complete listing of the translations of all the rules, simply type: </li></ul><ul><ul><li>listing. </li></ul></ul>
  55. 55. Separating rules and lexicon <ul><li>By separating rules and lexicon we mean that we want to eliminate all mentioning of individual words in the DCGs and instead record all the information about individual words separately in a lexicon. </li></ul><ul><li>To see what is meant by this, let's return to the basic grammar, namely: </li></ul><ul><ul><ul><li>np - - > det, n. vp - - > v, np. vp - - > v. det - - > [the]. det - - > [a]. n - - > [woman]. n - - > [man]. v - - > [shoots].   </li></ul></ul></ul>
  56. 56. Separating rules and lexicon <ul><li>We are going to separate the rules form the lexicon. </li></ul><ul><li>That is, we are going to write a DCG that generates exactly the same language, but in which no rule mentions any individual word. </li></ul><ul><li>All the information about individual words will be recorded separately. </li></ul>
  57. 57. Separating rules and lexicon <ul><li>Here is an example of a (very simple) lexicon. </li></ul><ul><li>Lexical entries are encoded by using a predicate lex/2 whose first argument is a word, and whose second argument is a syntactic category: </li></ul><ul><ul><ul><ul><li>lex(the, det). lex(a, det). lex(woman, n). lex(man, n). lex(shoots, v). </li></ul></ul></ul></ul>
  58. 58. Separating rules and lexicon <ul><li>A simple grammar that could go with this lexicon will be very similar to the basic DCG. </li></ul><ul><li>In fact, both grammars generate exactly the same language. </li></ul><ul><li>The only rules that change are those that mention specific words, i.e. the det, n, and v rules. </li></ul><ul><ul><ul><ul><li>det --> [Word], {lex(Word, det)}. n --> [Word], {lex(Word, n)}. v --> [Word], {lex(Word, v)}. </li></ul></ul></ul></ul>
  59. 59. Separating rules and lexicon <ul><ul><ul><ul><li>Grammar: </li></ul></ul></ul></ul><ul><ul><ul><ul><li>np - - > det, n. vp - - > v, np. vp - - > v. det --> [Word], {lex(Word, det)}. n --> [Word], {lex(Word, n)}. v --> [Word], {lex(Word, v)}. </li></ul></ul></ul></ul>
  60. 60. Separating rules and lexicon <ul><li>Consider the new det rule: </li></ul><ul><ul><ul><li>det --> [Word], {lex(Word, det)}. </li></ul></ul></ul><ul><li>This rule says “a det can consist of a list containing a single element Word ” (note that Word is a variable). </li></ul><ul><li>The extra test adds the crucial condition: “as long as Word matches with something that is listed in the lexicon as a determiner”. </li></ul>
  61. 61. Separating rules and lexicon <ul><li>With our present lexicon, this means that Word must be matched either with the word “a” or “the”: </li></ul><ul><ul><li>lex(the, det). lex(a, det). </li></ul></ul><ul><li>So this single rule replaces the two previous DCG rules for det . </li></ul>
  62. 62. Separating rules and lexicon <ul><li>This explains the how of separating rules from lexicon, but it doesn't explain the why . </li></ul><ul><li>Is it really so important? </li></ul><ul><li>Is this new way of writing DCGs really that much better? </li></ul>
  63. 63. Separating rules and lexicon <ul><li>The answer is yes! for a theoretical reason: </li></ul><ul><ul><li>Arguably rules should not mention specific lexical items . </li></ul></ul><ul><ul><li>The purpose of rules is to list general syntactic facts, such as the fact that a sentence can be made up of a noun phrase followed by a verb phrase. </li></ul></ul><ul><ul><li>The rules for s, np, and vp describe such general syntactic facts, but the old rules for det, n, and v don't. </li></ul></ul><ul><ul><li>Instead, the old rules simply list particular facts: that a is a determiner, that the is a determiner, and so on. </li></ul></ul><ul><ul><li>From a theoretical perspective it is much neater to have a single rule that says “anything is a determiner (or a noun, or a verb,...) if it is listed as such in the lexicon”. </li></ul></ul>
  64. 64. Separating rules and lexicon <ul><li>Now, our little lexicon, with its simple lex entries, is a toy. </li></ul><ul><li>But a real lexicon is (most emphatically!) not. </li></ul><ul><li>A real lexicon is likely to be very large (it may contain hundreds of thousands, or even millions, of words ) and moreover, the information associated with each word is likely to be very rich. </li></ul>
  65. 65. Separating rules and lexicon <ul><li>Our lex entries give only the syntactical category of each word. </li></ul><ul><li>A real lexicon will give much more, such as information about its phonological, morphological, semantic, and pragmatic properties. </li></ul><ul><li>Because real lexicons are big and complex, from a software engineering perspective it is best to write simple grammars that have a well-defined way of pulling out the information they need from vast lexicons. </li></ul>
  66. 66. Separating rules and lexicon <ul><li>That is, grammars should be thought of as separate entities which can access the information contained in lexicons. </li></ul><ul><li>We can then use specialized mechanisms for efficiently storing the lexicon and retrieving data from it. </li></ul><ul><li>The new rules really do just list general syntactic facts , and the extra tests act as an interface to our (admittedly simple) lexicon that lets the rules find exactly the information they need. </li></ul>
  67. 67. Grammar 1: a trivial grammar for a fragment of language <ul><li>s  np, vp. % A sentence (s) is a noun phrase (np) plus a verb phrase (vp) </li></ul><ul><li>np  det, n. % A noun phrase is a determiner plus a noun </li></ul><ul><li>np  n. % ... or just a noun. </li></ul><ul><li>vp  v, np. % A verb phrase is a verb and its direct object, which is an np </li></ul><ul><li>vp  v. % ... or just the verb (for intransitives). </li></ul><ul><li>det    [Word], {lex(Word, det)}. </li></ul><ul><li>n    [Word], {lex(Word, n)}. </li></ul><ul><li>v    [Word], {lex(Word, v)}. </li></ul>
  68. 68. Grammar 1: a trivial grammar for a fragment of language <ul><li>lex(the, det). % ‘the’ is a determiner </li></ul><ul><li>lex(mary, n). % ‘mary’ is a noun. </li></ul><ul><li>lex(john, n). </li></ul><ul><li>lex(woman, n). </li></ul><ul><li>lex(apple, n). </li></ul><ul><li>lex(man, n). </li></ul><ul><li>lex(loves, v). % ‘loves’ is a verb. </li></ul><ul><li>lex(eats, v). </li></ul><ul><li>lex(sings, v). </li></ul>
  69. 69. Sentences for Grammar 1 <ul><li>mary loves john </li></ul><ul><li>the woman eats the apple </li></ul><ul><li>the man sings </li></ul><ul><li>mary eats </li></ul>
  70. 70. Grammar 2: restrictions in argument selection <ul><li>s  np, vp. </li></ul><ul><li>compl([ ])  [ ]. </li></ul><ul><li>compl([arg(X)])  p(X), np. </li></ul><ul><li>compl([ ])  np. </li></ul><ul><li>np  name. </li></ul><ul><li>np  det, n. </li></ul><ul><li>vp  v(X), compl(X). % A vp is a verb plus a verbal complement (compl) </li></ul>
  71. 71. Grammar 2: restrictions in argument selection <ul><li>v(A)    [Word], {lex(Word, v, A)}. </li></ul><ul><li>name  [Word], {lex(Word, name)}. </li></ul><ul><li>n    [Word], {lex(Word, n)}. </li></ul><ul><li>det    [Word], {lex(Word, det)}. </li></ul><ul><li>p(Word)  [Word], {lex(Word, p)}. </li></ul>
  72. 72. Grammar 2: restrictions in argument selection <ul><li>lex(piensa, v, [arg(en)]). </li></ul><ul><li>lex(está, v, [arg(en)]). </li></ul><ul><li>lex(ríe, v, [ ]). </li></ul><ul><li>lex(habla, v, [arg(con)]). </li></ul><ul><li>lex(lee, v, [ ]). </li></ul><ul><li>lex(el, det). % ‘el’ is a determiner </li></ul>
  73. 73. Grammar 2: restrictions in argument selection <ul><li>lex(un, det). </li></ul><ul><li>lex(mary, name). </li></ul><ul><li>lex(john, name). </li></ul><ul><li>lex(profesor, n). </li></ul><ul><li>lex(en, p) </li></ul>
  74. 74. Sentences for Grammar 2 <ul><li>mary piensa en john </li></ul><ul><li>john habla con mary </li></ul><ul><li>john ríe </li></ul><ul><li>un profesor habla con mary </li></ul>
  75. 75. Extension of Grammar 2 <ul><li>John habla de Clara con Mary </li></ul><ul><li>Needed modifications: </li></ul><ul><ul><li>compl([arg(X) | Y])  p(X), np, compl(Y). </li></ul></ul><ul><ul><li>lex(habla, v, [arg(de), arg(con)]). </li></ul></ul><ul><ul><li>lex(clara, name). </li></ul></ul>
  76. 76. Grammar 3: logical representation of sentences <ul><li>s(F)  np(S), v(S, X, F), compl(X). </li></ul><ul><li>compl([ ])  [ ]. </li></ul><ul><li>compl([arg(X,O) | Y])  p(X), np (O), compl(Y). </li></ul><ul><li>compl([arg(null, O) | Y])  np(O), compl(Y). </li></ul><ul><li>np(S)  name(S). </li></ul><ul><li>np(S)  det, n(S). </li></ul>
  77. 77. Grammar 3: logical representation of sentences <ul><li>v(S,A,F)    [Word], {lex(Word, v, S, A, F)}. </li></ul><ul><li>name(Word)  [Word], {lex(Word, name)}. </li></ul><ul><li>n(Word)    [Word], {lex(Word, n)}. </li></ul><ul><li>det    [Word], {lex(Word, det)}. </li></ul><ul><li>p(Word)  [Word], {lex(Word, p)}. </li></ul>
  78. 78. Grammar 3: logical representation of sentences <ul><li>lex(clara, name). </li></ul><ul><li>lex(maria, name). </li></ul><ul><li>lex(juan, name). </li></ul><ul><li>lex(barcelona, name). </li></ul><ul><li>lex(libro, n). </li></ul><ul><li>lex(hombre, n). </li></ul><ul><li>lex(profesor, n). </li></ul>
  79. 79. Grammar 3: logical representation of sentences <ul><li>lex(el, det). </li></ul><ul><li>lex(un, det). </li></ul><ul><li>lex(en, p). </li></ul><ul><li>lex(con, p). </li></ul><ul><li>lex(de, p). </li></ul>
  80. 80. Grammar 3: logical representation of sentences <ul><li>lex(ríe, v, S, [ ], reir(S)). </li></ul><ul><li>lex(piensa, v, S, [arg(en, O)], pensar_en(S, O)). </li></ul><ul><li>lex(habla, v, S, [arg(de, O),arg(con, O1)], comunica(S,O, O1)). </li></ul><ul><li>lex(habla, v, S, [arg(con, O),arg(de, O1)], comunica(S,O1, O)). </li></ul><ul><li>lex(está, v, S, [arg(en, O)], locativo(S, O)). </li></ul><ul><li>lex(lee, v, S, [arg(null, O)], leer(S, O)). </li></ul>
  81. 81. Sentences for Grammar 3 <ul><li>unary predicate (ríe, v, S, [ ], reir(S)). </li></ul><ul><li>binary predicate (piensa, v, S, [arg(en, O)], pensar_en(S, O)). </li></ul><ul><li>ternary predicate (habla, v, S, [arg(con,O), arg(de, O1)], comunica(S, O1, O)). </li></ul><ul><li>Example: </li></ul><ul><ul><li>Juan piensa en Maria = pensar_en(juan, maria). </li></ul></ul>
  82. 82. Prolog input and output <ul><li>analysis(F, X, [ ]):- s(F, X, [ ]). </li></ul><ul><li>| ?- analysis(F, [juan, está, en, barcelona], [ ]). </li></ul><ul><li>F = locativo(juan, barcelona) ? </li></ul><ul><li>yes </li></ul><ul><li>| ?- analysis(F, [juan, piensa, en, maria], [ ]). </li></ul><ul><li>F = pensar_en(juan, maria) ? </li></ul><ul><li>yes </li></ul>
  83. 83. Prolog input and output <ul><li>| ?- analysis(F, [el, libro, está, en, barcelona], [ ]). </li></ul><ul><li>F = locativo(libro, barcelona) ? </li></ul><ul><li>yes </li></ul><ul><li>| ?- analysis(F, [juan, lee, un, libro], [ ]). </li></ul><ul><li>F = leer(juan, libro) ? </li></ul><ul><li>yes </li></ul>
  84. 84. Prolog input and output <ul><li>| ?- analysis(F, [el, hombre, habla, de, juan, con, maria], [ ]). </li></ul><ul><li>F = comunica(hombre, juan, maria) ? </li></ul><ul><li>yes </li></ul><ul><li>| ?- analysis(F, [el, hombre, ríe], [ ]). </li></ul><ul><li>F = reir(hombre) ? </li></ul><ul><li>yes </li></ul>
  85. 85. Prolog input and output <ul><li>| ?- analysis(F, [el, profesor, piensa, en, un, libro], [ ]). </li></ul><ul><li>F = pensar_en(profesor, libro) ? </li></ul><ul><li>yes </li></ul>
  86. 86. Grammar 4: quantification <ul><li>It exists X and X is a libro : </li></ul><ul><ul><ul><ul><li>el libro = e(X, libro(X)). </li></ul></ul></ul></ul><ul><li>All X such that X is a libro : </li></ul><ul><ul><ul><ul><li>todo libro = a(X, libro(X)). </li></ul></ul></ul></ul>
  87. 87. Grammar 4: quantification <ul><li>el libro cae = e(X, and(libro(X), cae(X))) </li></ul><ul><li>Juan piensa en el libro = e(X, and(libro(X), piensa(juan, X))) </li></ul><ul><li>todo hombre piensa en el libro = a(X, implies(hombre(X), e(Y, and(libro(Y), piensa(X,Y))) </li></ul>
  88. 88. Grammar 4: quantification <ul><li>lex(el,det,K,S1,S2,e(K,and(S1,S2))). </li></ul><ul><li>lex(un,det,K,S1,S2,e(K,and(S1,S2))). </li></ul><ul><li>lex(los,det,K,S1,S2,a(K,implies(S1,S2))). </li></ul><ul><li>lex(todo,det,K,S1,S2,a(K,implies(S1,S2))). </li></ul><ul><li>np(K,S2,F)  det(K,S1,S2,F), n(K,S1). </li></ul><ul><li>np(K,F,F)  name(K). </li></ul>
  89. 89. Grammar 4: quantification <ul><li>compl([ ],S,S)  [ ]. </li></ul><ul><li>compl([arg(X,K) | Y],S1,S)  p(X), np(K,S2,S), compl(Y,S1,S2). </li></ul><ul><li>s(S)  np(K,S2,S), v(K,X,S1), compl(X,S1,S2). </li></ul><ul><li>n(K,F)    [Word],{lex(Word,n,K,F)}. </li></ul><ul><li>lex(libro,n,K,libro(K)). </li></ul>
  90. 90. Prolog input and output <ul><li>| ?- analysis(F,[el,hombre,ríe],[ ]). </li></ul><ul><li>F = e(_A,and(hombre(_A),reir(_A))) ? </li></ul><ul><li>yes </li></ul><ul><li>| ?- analysis(F,[el,profesor,piensa,en,un,libro],[ ]). </li></ul><ul><li>F = e(_B,and(profesor(_B),e(_A,and(libro(_A),pensar_en(_B,_A))))) ? </li></ul><ul><li>yes </li></ul>
  91. 91. Prolog input and output <ul><li>| ?- analysis(F,[el,hombre,habla,de,juan,con,maria],[ ]). </li></ul><ul><li>F = e(_A,and(hombre(_A),comunica(_A,juan,maria))) ? </li></ul><ul><li>yes </li></ul><ul><li>| ?- analysis(F,[todo,hombre,piensa,en,un,libro],[ ]). </li></ul><ul><li>F = a(_B,implies(hombre(_B),e(_A,and(libro(_A),pensar_en(_B,_A))))) ? </li></ul><ul><li>yes </li></ul>
  92. 92. Prolog input and output <ul><li>| ?- analysis(F,[todo,libro,esta,en,barcelona],[ ]). </li></ul><ul><li>F = a(_A,implies(libro(_A),locativo(_A,barcelona))) ? </li></ul><ul><li>yes </li></ul>
  93. 93. Extension of Grammar 4 <ul><li>El hombre bueno: </li></ul><ul><ul><ul><ul><li>e(X, and(hombre(X), bueno(X))) </li></ul></ul></ul></ul>
  94. 94. Grammar 5: semantic constraints <ul><li>Argument selection: </li></ul><ul><ul><li>*Juan lee el hombre </li></ul></ul><ul><ul><li>El gato come pescado </li></ul></ul><ul><ul><li>El perro corre por el camino </li></ul></ul><ul><li>Semantic categories: </li></ul><ul><ul><li>human: Juan, María, Clara, hombre, profesor </li></ul></ul><ul><ul><li>animate: perro, gato </li></ul></ul><ul><ul><li>inanimate: libro, pescado, bocadillo, silla </li></ul></ul><ul><ul><li>locative: Barcelona, camino </li></ul></ul>
  95. 95. Nouns’ semantic categories <ul><li>lex(clara, name, human). </li></ul><ul><li>lex(maria, name, human). </li></ul><ul><li>lex(juan, name, human). </li></ul><ul><li>lex(barcelona, name, locative). </li></ul>
  96. 96. Nouns’ semantic categories <ul><li>lex(libro, n, K, libro(K), inanimate). </li></ul><ul><li>lex(hombre, n, K, hombre(K), human). </li></ul><ul><li>lex(profesor, n, K, profesor(K), human). </li></ul><ul><li>lex(perro, n, K, perro(K), animate). </li></ul><ul><li>lex(gato, n, K, gato(K), animate). </li></ul><ul><li>lex(camino, n, K, camino(K), locative). </li></ul>
  97. 97. Verbs’ semantic categories <ul><li>lex(piensa, v, S, [arg(en,O)], pensar_en(S,O), sem(human, [X])). </li></ul><ul><li>lex(habla, v, S, [arg(de,O),arg(con,O1)], comunica(S,O,O1), sem(human, [X,human])). </li></ul><ul><li>lex(está, v, S, [arg(en,O)], locative(S,O), sem(X, [locative])). </li></ul><ul><li>lex(lee, v, S, [arg(null,O)], leer(S,O), sem(human, [inanimate])). </li></ul>
  98. 98. Grammar 5: semantic constraints <ul><li>v(S,A,F,sem)    [Word],{lex(Word,v,S,A,F,sem)}. </li></ul><ul><li>name(Word,sem)  [Word],{lex(Word,name,sem)}. </li></ul><ul><li>n(Word,sem)    [Word],{lex(Word,n,sem)}. </li></ul><ul><li>np(K,S2,F,sem)  det(K,S1,S2,F), n(K,S1,sem). </li></ul><ul><li>np(K,F,F,sem)  name(K,sem). </li></ul>
  99. 99. Grammar 5: semantic constraints <ul><li>compl([ ],S,S,[ ])  [ ]. </li></ul><ul><li>compl([arg(X,K) | Y],S1,S,[sem | sem2])  p(X), np(K,S2,S,sem), compl(Y,S1,S2,sem2). </li></ul><ul><li>s(S)  np(K,S2,S,sem1), v(K,X,S1,sem(sem1,list-sem)), compl(X,S1,S2,[list-sem]). </li></ul>

×