Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Estática

9

Centro de Gravedad y
Centroide
Objetivos
• Concepto de centro de gravedad, centro de masas y
centroide
• Determinar la localización del centro de graveda...
Índice
1. Centro de Gravedad y Centro de Masas par un
Sistema de Partículas
2. Cuerpos compuestos
3. Teoremas de Pappus y ...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centro de Gravedad
• Localiza el peso resultante de...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centro de Gracedad
• Peso resultante = peso total d...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centro de Gravedad
• Aunque los pesos no producen m...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centro de Masas
• Ya que el peso es W = mg
̃
∑ x m ...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centro de Masas
• Un cuerpo rídigo está compuesto p...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centroide de un Volumen
• Consideremos un objeto su...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centroide de un Área
• Para el centroide de la supe...
9.1 Centro de Gravedad y Centro de
Masas para un Sistema de Partículas
Centroide de una Línea
• Si la geometría de un obje...
Ejemplo
Localice el centroide de la barra doblada formando un
arco parabólico
Solución
Elemento diferencial
Localizado sobre la curva en un punto arbitrario (x, y)
Área y Brazo de Momento o palanca
Pa...
Solución
Integrando
̃
∫ x dL ∫ x √ 4y 2 +1 dy ∫ y 2 √ 4y 2+1 dy
x L
=
=
̄=
2
∫ dL ∫ √ 4y +1 dy ∫ √ 4y 2 +1 dy
L

0 . 6063
...
9.2 Cuerpos compuestos
•

•
•

Consisten en una serie de cuerpos “más simples” (ej.
rectangulares, triangulares o semicirc...
9.2 Cuerpos compuestos
Procedimiento de Análisis
Partes
• Dividir el cuerpo en un número finito de partes que
tengan una f...
9.2 Cuerpos compuestos
Procedimiento de Análisis
Sumas
• Determinar las coordinadas del centro de gravedad
aplicando las e...
Ejemplo
Localizar el centroide de la placa.
Solución
Partes
Dividimos la placa en 3 segmentos.
El área del rectágulo pequeño se puede considerar
“negativa”.
Solución
Brazo del Momento
Localización del centroide para cada pieza está
determinado e indicado en el diagrama.

Suma
x
...
9.3 Teoremas de Pappus y Guldinus
•

•

Una superficie de revolución se genera rotando una
curva plana alrededor de un eje...
9.3 Teoremas de Pappus y Guldinus
•

Se usan los teoremas de Pappus y Guldinus para
encontrar las superficies y los volume...
9.3 Teoremas de Pappus y Guldinus
Volumen
• Volumen de un cuerpo de revolución = producto del
área generadora por la dista...
Ejemplo
Demuestre que el área de la superficie de una esfera es
A = 4πR2 y su volumen V = 4/3 πR3.
Solución
Área de la sup...
Solución
Volumen
Generado por la rotación de un área semicircular
alrededor del eje x
Para el centroide,

r =4R /3π
̄
Para...
9.4 Resultante de una carga distribuida
Distribución de la presión sobre una superficie
• Consideramos una superficie plan...
9.4 Resultante de una carga distribuida
Distribución de la presión sobre una superficie.
• El sistema se puede simplificar...
9.4 Resultante de una carga distribuida
Magnitud de la fuerza resultante
• Para determinar la magnitud de FR, sumamos las
...
9.5 Presión en fluidos
• De acuerdo a la ley de Pascal, un fluido en reposo crea
una presión p en un punto siendo la misma...
9.5 Presión en fluidos
Placa plana de anchura constante
• Considere una placa rectangular de espesor constante
sumergida e...
9.5 Presión en fluidos
Placa plana de anchura constante
• Como la presión varía linealmente con la profundidad,
la presión...
9.5 Presión en fluidos
Placa plana curvada de anchura constante
• Cuando la placa sumergida está curvada, la presión
que a...
9.5 Presión en fluidos
Placa plana de anchura variable
• Consideramos la distribución de carga que actúa sobre
la superfic...
9.5 Presión en fluidos
Placa plana de espesor variable
• El centroide C' define el punto en el que FR actúa

F R =∫ ρdA= ∫...
Ejemplo
Determine la magnitud y localización de la fuerza
hidrostática resultante sobre la placa sumergida AB. La
placa ti...
Solución
La presión del agua a las profundidades A y B son

ρ A =ρ w gz A =(1000 kg /m3 )(9 .81 m/ s 2 )( 2m)=19. 62 kPa
ρ...
Solución
Para la magnitud de la fuerza resultante FR creada por la
carga distribuida.

F R =area of trapezoid
1
(3 )(29 . ...
Solution
El mismo resultado se puede optener considernado dos
componentes de FR definidas por el triangulo y rectángle.
Ca...
Solución
La localización de FR se determina sumando los
momentos respecto a B

∑ ( M R ) B=∑ M B ;
(154 .5)h= 88 .3(1.5)+6...
QUIZ
1.El _________ es el punto que define el centro
geométrico de un objeto.
A)Centro de gravedad B) Centro de masa
B)Cen...
QUIZ
3. Si una banda vertical se elige como el elemento
diferencial, entonces, todas las variables, incluido los
límites d...
QUIZ
5. Un cuerpo compuesto se refiere en este tema a un
cuerpo hecho de ____.
A) Fibra de carbón y resina
B) Acero y ceme...
QUIZ
7. Unsando la información del centroide, ¿cuál es el
mínimo número de piezas que hay que considerar para
determinar e...
QUIZ
7. ¿Cuál es el mín numero de piezas que
Hay que considerar para determinar el
centroide de la superficie?
A)1 B) 2
C)...
QUIZ
y

9. For determining the centroid,
what is the min number of pieces you can use?
A) Two
B) Three
C) Four
D) Five

2c...
Upcoming SlideShare
Loading in …5
×

Cap9

1,713 views

Published on

Published in: Technology, Health & Medicine
  • Be the first to comment

Cap9

  1. 1. Estática 9 Centro de Gravedad y Centroide
  2. 2. Objetivos • Concepto de centro de gravedad, centro de masas y centroide • Determinar la localización del centro de gravedad y del centroide para un sistema de partículas discretas y para un cuerpo de forma arbitraria • Teoremas de Pappus y Guldinus • Método para encontrar la resultante de una carga distribuida de manera general
  3. 3. Índice 1. Centro de Gravedad y Centro de Masas par un Sistema de Partículas 2. Cuerpos compuestos 3. Teoremas de Pappus y Guldinus 4. Resultantes de cargas distribuidas 5. Presión de un fluido
  4. 4. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centro de Gravedad • Localiza el peso resultante de un sistema de partículas • Consideramos un sistema de n partículas fijo dentro de una región del espacio • Los pesos de las partículas pueden reempazarse por una única (equivalente) resultante con un punto de aplicación G bien definido
  5. 5. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centro de Gracedad • Peso resultante = peso total de las n partículas • • • W R =∑ W Suma de los momentos de los pesos de todas las partículas respecto a los ejes x, y, z axes = momento del peso resultante respecto a esos ejes Suma de momentos respecto al eje x, x ̃ x ̃ ̄ W R = x 1 W 1 + ̃ 2 W 2 +...+ x n W n Suma de momentos respecto al eje y, y y ̃ ̃ ̄ W R= y 1 W 1 + ̃ 2 W 2 +...+ y n W n
  6. 6. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centro de Gravedad • Aunque los pesos no producen momento sobre el eje z, podemos rotar el sistema de coordenadas 90° respecto al eje x (o y) con las partículas fijas y sumar los momentos respecto al eje x (o y), z ̃ ̃ ̃ ̄ W R= z 1 W 1 + z 2 W 2 +. . .+ z n W n • De manera general, si g es constante, ∑ ̃x m ; ̄ =∑ ̃y m , ̄ =∑ ̃z m x y z ̄= ∑m ∑m ∑m
  7. 7. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centro de Masas • Ya que el peso es W = mg ̃ ∑ x m ; ̄ = ∑ ̃y m , ̄ = ∑ ̃z m x y z ̄= ∑m ∑m ∑m • Esto implica que el centro de gravedad coincide con el centro de masas • Las partículas tienen peso solo bajo la influencia de una atracción gravitatoria, mientras que el centro de masas es independiente de la gravedad.
  8. 8. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centro de Masas • Un cuerpo rídigo está compuesto por un número infinito de partículas • Si consideramos una partícula arbitraria de peso dW ∫ x̃ dW ; ̄y= ∫ ̃y dW ; z =∫ z̃ dW x ̄= ̄ ∫ dW ∫ dW ∫ dW
  9. 9. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centroide de un Volumen • Consideremos un objeto subdivididos en elementos de volumen dV. Para la localización del centroide, ∫ x̃ dV x ̄= V ∫ dV V ∫ ̃y dV ; ̄= y V ∫ dV V ∫ ̃z dV ; ̄= z V ∫ dV V
  10. 10. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centroide de un Área • Para el centroide de la superficie de un objeto, tal como una placa o un disco, subdividimos el área en elementos diferenciales dA ∫ x̃ dA ∫ ̃y dA ∫ ̃z dA x A ̄= ∫ dA A ;̄= A y ∫ dA A ; ̄= A z ∫ dA A
  11. 11. 9.1 Centro de Gravedad y Centro de Masas para un Sistema de Partículas Centroide de una Línea • Si la geometría de un objeto toma la forma de una linea, el balance de los momentos de cada elemento diferencial dL respecto a cada eje, resulta ∫ x̃ dL ∫ ̃y dL ∫ ̃z dL x ̄= L ∫ dL L ; ̄= y L ∫ dL L ; ̄= z L ∫ dL L
  12. 12. Ejemplo Localice el centroide de la barra doblada formando un arco parabólico
  13. 13. Solución Elemento diferencial Localizado sobre la curva en un punto arbitrario (x, y) Área y Brazo de Momento o palanca Para la longitud diferencial del elemento dL 2 2 dL= √ ( dx ) + ( dy ) = √( dx dy 2 ) +1 dy dL= √ ( 2y ) 2 +1 dy 2 Ya que x = y , y resulta, dx/dy = 2y y =y ̃ x =x, ̃ El centroide está localizado en
  14. 14. Solución Integrando ̃ ∫ x dL ∫ x √ 4y 2 +1 dy ∫ y 2 √ 4y 2+1 dy x L = = ̄= 2 ∫ dL ∫ √ 4y +1 dy ∫ √ 4y 2 +1 dy L 0 . 6063 =0 . 410 m 1. 479 ∫ ̃y dL y √ 4y 2 +1 dy ∫ L y = ̄= ∫ dL ∫ √ 4y 2 +1 dy L 0 . 8484 =0 .574 m 1. 479
  15. 15. 9.2 Cuerpos compuestos • • • Consisten en una serie de cuerpos “más simples” (ej. rectangulares, triangulares o semicirculares) conectados entre sí Un cuerpo puede ser seccionado en sus partes componentes Para un número finito de pesos tenemos x ̄= ̃ ∑xW ∑W y ̄= y ∑̃W ∑W z ̄= z ∑̃W ∑W
  16. 16. 9.2 Cuerpos compuestos Procedimiento de Análisis Partes • Dividir el cuerpo en un número finito de partes que tengan una forma más simple • Los huecos se tratan como una parte con peso o tamaño negativo Brazo del momento • Establecer los ejes de coordenadas y dereminar las coordenadas del centro de gravedad o centroide de cada parte
  17. 17. 9.2 Cuerpos compuestos Procedimiento de Análisis Sumas • Determinar las coordinadas del centro de gravedad aplicando las ecuaciones del centro de gravedad • Si un objeto es simétrico respecto a un eje. El centroide está localizado en ese eje
  18. 18. Ejemplo Localizar el centroide de la placa.
  19. 19. Solución Partes Dividimos la placa en 3 segmentos. El área del rectágulo pequeño se puede considerar “negativa”.
  20. 20. Solución Brazo del Momento Localización del centroide para cada pieza está determinado e indicado en el diagrama. Suma x ∑ ̃ A =−4 =−0 . 348 mm ∑ A 11 . 5 y ∑ ̃ A =14 =1 . 22 mm y ̄= ∑ A 11 .5 x ̄=
  21. 21. 9.3 Teoremas de Pappus y Guldinus • • Una superficie de revolución se genera rotando una curva plana alrededor de un eje fijo en el plano de la curva Un volumen de revolución se genera rotando un área plana alrededor de un eje fijo en el plano del área
  22. 22. 9.3 Teoremas de Pappus y Guldinus • Se usan los teoremas de Pappus y Guldinus para encontrar las superficies y los volumenes de cualquier objeto de revolución siempre que las curvas y áreas generadoras no crucen el eje respecto al cual son rotadas Área de una Superficie • El área de una superficie de revolución = producto de la longitud de la curva por la distancia que recorre el centroide al generar la superficie A=θ ̄ L r
  23. 23. 9.3 Teoremas de Pappus y Guldinus Volumen • Volumen de un cuerpo de revolución = producto del área generadora por la distancia viajada por el centroide al generar el volumen V=θ r A ̄
  24. 24. Ejemplo Demuestre que el área de la superficie de una esfera es A = 4πR2 y su volumen V = 4/3 πR3. Solución Área de la superficie Generada por el semicírculo rotando alrededor del eje x Para el centroide, r ̄ =2R /π Para la superficie área, A=θ r L; ̃ 2R A=2π πR= 4πR 2 π ( )
  25. 25. Solución Volumen Generado por la rotación de un área semicircular alrededor del eje x Para el centroide, r =4R /3π ̄ Para el volumen, V=θ r A; ̃ 4R V=2π 3π 1 2 4 3 πR = πR 2 3 ( )( )
  26. 26. 9.4 Resultante de una carga distribuida Distribución de la presión sobre una superficie • Consideramos una superficie plana sometida a una carga por unidad de superficie p = p(x, y) Pa • Determinamos la fuerza dF que actúa sobre el elemento de área dA m2 de la placa, localizado en el punto (x, y) dF = [p(x, y) N/m2](dA m2) = [p(x, y) dA] N • La carga entera se representa como un infinito número de fuerzas paralelas actuando sobre cada diferencial de área
  27. 27. 9.4 Resultante de una carga distribuida Distribución de la presión sobre una superficie. • El sistema se puede simplificar a una fuerza resultante FR actuando sobre un punto único de la placa
  28. 28. 9.4 Resultante de una carga distribuida Magnitud de la fuerza resultante • Para determinar la magnitud de FR, sumamos las fuerzas diferenciales dF actuando sobre cada elemento de área • Magnitud de la fuerza resultante = volumen total el diagrama distribuido de cargas • La localización de la fuerza resultante es ∫ xρ ( x,y)dA =∫ xdV x ̄= ∫ ρ( x,y)dA ∫ dV ∫ yρ( x,y )dA =∫ ydV y ̄= ∫ ρ( x,y )dA ∫ dV
  29. 29. 9.5 Presión en fluidos • De acuerdo a la ley de Pascal, un fluido en reposo crea una presión p en un punto siendo la misma en todas las direcciones. • La magnitud de p depende del peso específico γ o de la densidad másica ρ del fluido, y de la profundidad z desde la superficie a la que se encuentra el punto considerado p = γz = ρgz • Esto solo es válido para fluidos incompresibles • Un gas es un fluido compresible y la anterior ecuación no puede usarse
  30. 30. 9.5 Presión en fluidos Placa plana de anchura constante • Considere una placa rectangular de espesor constante sumergida en un líquido de peso específico γ • El plano de la placa forma un ángulo con la horizontal según se muestra
  31. 31. 9.5 Presión en fluidos Placa plana de anchura constante • Como la presión varía linealmente con la profundidad, la presión sobre la placa se representa por un volumen trapezoidal, teniendo una intensidad de p1= γz1 en z1 , y p2 = γz2 en z2 • Magnitud de la fuerza resultante FR = volumen del diagrama de cargas
  32. 32. 9.5 Presión en fluidos Placa plana curvada de anchura constante • Cuando la placa sumergida está curvada, la presión que actúa normal a la placa cambia continuamente de dirección • Se puede determinar FR, la localización del centroide C, y del centro de presiones P, por integración
  33. 33. 9.5 Presión en fluidos Placa plana de anchura variable • Consideramos la distribución de carga que actúa sobre la superficie de una placa sumergida de espesor variable • La presión uniforme p = γz (fuerza/área) actuá sobre dA, la magnitud del elemento de fuerza dF dF = dV = p dA = γz(xdy’)
  34. 34. 9.5 Presión en fluidos Placa plana de espesor variable • El centroide C' define el punto en el que FR actúa F R =∫ ρdA= ∫ dV =V • El centro de presión P que se encuentra en la superficie de la placa justo debajo del centroide del volumen del diagrama de presiones de C viene dado por ̃ ∫ x dV x ̄= ∫ dV ∫ ̃y 'dV y ̄ '= ∫ dV • Este punto no coincide con el centroide de la superficie de la placa
  35. 35. Ejemplo Determine la magnitud y localización de la fuerza hidrostática resultante sobre la placa sumergida AB. La placa tiene un anchura de 1.5m; ρw = 1000kg/m3.
  36. 36. Solución La presión del agua a las profundidades A y B son ρ A =ρ w gz A =(1000 kg /m3 )(9 .81 m/ s 2 )( 2m)=19. 62 kPa ρ B =ρ w gz B=(1000 kg /m3 )(9 .81 m/ s 2 )(5m )=49 . 05 kPa Para las intensidades de las cargas en A y B, w A =bρA =(1. 5m)(19 . 62 kPa )=29 . 43 kN /m w B =bρ B=(1. 5m)(49 . 05 kPa )=73 . 58 kN /m
  37. 37. Solución Para la magnitud de la fuerza resultante FR creada por la carga distribuida. F R =area of trapezoid 1 (3 )(29 . 4 +73 . 6 )=154 . 5N 2 Esta fuerza actúa This force actúa sobre el centroide del área, a una altura 1 2(29 . 43 )+73 . 58 h= (3 )=1 .29 m 3 29. 43+73 . 58 ( medida desde B )
  38. 38. Solution El mismo resultado se puede optener considernado dos componentes de FR definidas por el triangulo y rectángle. Cada fuerza actúa a través de su centroide asociado y tiene una magnitud de F Re=(29 . 43 kN /m)(3m )=88 . 3 kN F t =(44 . 15 kN /m)(3m )=66 . 2 kN Y resulta F R =F Re +F R=88 . 3 kN+66 . 2 kN=154 .5 kN
  39. 39. Solución La localización de FR se determina sumando los momentos respecto a B ∑ ( M R ) B=∑ M B ; (154 .5)h= 88 .3(1.5)+66 .2(1) h=1.29 m
  40. 40. QUIZ 1.El _________ es el punto que define el centro geométrico de un objeto. A)Centro de gravedad B) Centro de masa B)Centroide D) Niguna respuesta es correcta 2. Para estudiar problemas del movimiento de la materia bajo influencias de fuerzas, i.e. de dinámica, es necesario localizar un punto llamado ________. A) Centro de gravedad B) Centro de masa C) Centroide D) Ninguna respuesta es correcta
  41. 41. QUIZ 3. Si una banda vertical se elige como el elemento diferencial, entonces, todas las variables, incluido los límites de integración deben de estar en función de ___ . A) x B) y C) z D) Ninguna es correcta 4. Para la banda elegida, cuáles son los valores de: x, y ˜˜ A) (x , y) B) (x / 2 , y / 2) C) (x , 0) D) (x , y / 2)
  42. 42. QUIZ 5. Un cuerpo compuesto se refiere en este tema a un cuerpo hecho de ____. A) Fibra de carbón y resina B) Acero y cemento C) Una colección de partes “simples” y huecos D) Una colección de partes “complejas” y huecos 6. El método para determinar la localización del centro de gravedad conocidas los de las partes, requiere de _______. A) Integración B) Diferenciación C) Simple aritmética D) Todo lo anterior.
  43. 43. QUIZ 7. Unsando la información del centroide, ¿cuál es el mínimo número de piezas que hay que considerar para determinar el área que se muestra a la derecha? A)1 B) 2 C) 3 D) 4 8. A storage box is tilted up to clean the rug underneath the box. It is tilted up by pulling the handle C, with edge A remaining on the ground. What is the maximum angle of tilt (measured between bottom AB and the ground) possible before the box tips over? A) 30° B) 45 ° C) 60 ° D) 90 °
  44. 44. QUIZ 7. ¿Cuál es el mín numero de piezas que Hay que considerar para determinar el centroide de la superficie? A)1 B) 2 C) 3 D) 4 8. Una caja is tilted up by pulling C, with edge A remaining on the ground. What is the max angle of tilt possible before the box tips over? A) 30° B) 45 ° C) 60 ° D) 90 ° 1 cm 3cm 1 cm 3cm C G B 30º A
  45. 45. QUIZ y 9. For determining the centroid, what is the min number of pieces you can use? A) Two B) Three C) Four D) Five 2cm 4cm x 2cm 2cm 10. For determining the centroid of the area, y 1m 1m what are the coordinates (x, y ) of the centroid of square DEFG? A D E 1m A) (1, 1) m B) (1.25, 1.25) m G F 1m C) (0.5, 0.5 ) m D) (1.5, 1.5) m B C x

×