Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Rohan Chakraborty Indus world school  Raipur [C.G]
Failings of Previous Fuel Types <ul><li>Brittleness of materials </li></ul><ul><ul><li>Engine vibrations cracked the fuel ...
Cladding Failure of Early NTR Designs
Fuel Endurance
Tungsten Cermet <ul><li>Hot hydrogen compatibility  </li></ul><ul><li>Better thermal conductivity  </li></ul><ul><li>Poten...
Lifetime of Cermet Fuels <ul><li>Not limited by erosion of tungsten-cermet fuels </li></ul><ul><li>Actual limitation </li>...
Future of Cermet Fuel <ul><li>Bi-modal design for power production </li></ul><ul><li>Reusable nuclear rocket engines </li>...
Fuel Additives <ul><li>Tungsten compatible materials </li></ul><ul><ul><li>Provide desirable mechanical properties </li></...
Cross Section (Probability) <ul><li>Various modifiers </li></ul><ul><ul><li>Particle energy </li></ul></ul><ul><ul><li>Sys...
Fission Cross Section
Design Benefits of a Fast Reactor <ul><li>Greater power density </li></ul><ul><li>Lighter core design than thermal reactor...
Maintaining Thermal Subcriticality <ul><li>Boron-carbide control drums absorb excess neutrons </li></ul><ul><li>Melting of...
Thermal Poison: Rhenium-187
Fuel Element Design (Past & Present) 19-Hole Design (2 mm) 5-Fin Design (3 mm) Dumbo Design
Cooling the Reactor System
Accident Scenarios for Homogenous Core Design  k  = 0.003 k is normalized to critical configuration Configuration k eff B...
Rocket Operation Parameters <ul><li>Single Reactor </li></ul><ul><li>Specific Impulse = 850 s </li></ul><ul><li>Thrust = 1...
Specific Impulse Comparison
Reactor Controls <ul><li>Requires semiautonomous controls  </li></ul><ul><li>Requires knowledge of real-time status </li><...
Measuring Flux, Power, and Dose <ul><li>Direct detection </li></ul><ul><ul><li>Requires detector to differentiate between ...
Temperature Measurements <ul><li>Require temperature profile of core, propellant, and fuel elements </li></ul><ul><li>Ther...
Propellant Flow <ul><li>Flow from storage tanks </li></ul><ul><li>Flow through turbomachinery </li></ul><ul><li>Propellant...
Strain/Deformation <ul><li>Important for k eff  – expansion yields negative reactivity and contraction yields positive rea...
Nuclear Dosimetry using MCNP5 <ul><li>Turbomachinery – SS </li></ul><ul><ul><li>Neutron </li></ul></ul><ul><ul><ul><li>1.2...
Summary <ul><li>Tungsten-Cermet fuels demonstrate potential for long-lived, high Isp, nuclear rockets with high-integrity ...
Upcoming SlideShare
Loading in …5
×

Tungsten

0 views

Published on

@bout wolfram W [tungsten]

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Tungsten

  1. 1. Rohan Chakraborty Indus world school Raipur [C.G]
  2. 2. Failings of Previous Fuel Types <ul><li>Brittleness of materials </li></ul><ul><ul><li>Engine vibrations cracked the fuel apart </li></ul></ul><ul><ul><li>Thermal instability, cracking, and coefficient of thermal expansion </li></ul></ul><ul><li>Hydrogen erosion of carbide fuels at high temperatures </li></ul><ul><ul><li>Carbide coatings provided insufficient protection </li></ul></ul><ul><li>Loss of fission products in exhaust </li></ul>
  3. 3. Cladding Failure of Early NTR Designs
  4. 4. Fuel Endurance
  5. 5. Tungsten Cermet <ul><li>Hot hydrogen compatibility </li></ul><ul><li>Better thermal conductivity </li></ul><ul><li>Potential for long life reactors </li></ul><ul><ul><li>High melting point (~3700 K) </li></ul></ul><ul><ul><li>Resistance to creep at high temperatures </li></ul></ul><ul><li>Smaller reactor core then carbide fuels </li></ul><ul><li>Good radiation migration properties </li></ul><ul><li>“ Cladding” from same metallic material </li></ul><ul><ul><li>Contains fission products and uranium oxide in fuel </li></ul></ul><ul><li>More radiation resistant than carbon </li></ul>W
  6. 6. Lifetime of Cermet Fuels <ul><li>Not limited by erosion of tungsten-cermet fuels </li></ul><ul><li>Actual limitation </li></ul><ul><ul><li>Quantity of nuclear material </li></ul></ul><ul><ul><li>Integrity of non-nuclear rocket components </li></ul></ul><ul><ul><li>Poison buildup </li></ul></ul><ul><ul><li>Possible space-cold effects (ductile to brittle transition) </li></ul></ul><ul><ul><li>Operation temperature (max I sp of ~950 s) </li></ul></ul>
  7. 7. Future of Cermet Fuel <ul><li>Bi-modal design for power production </li></ul><ul><li>Reusable nuclear rocket engines </li></ul><ul><ul><li>Orbital/Space Station refueling </li></ul></ul><ul><ul><li>LANTR (LOX-Augmented NTR) concept </li></ul></ul><ul><li>Develops technology for high performance fission surface power </li></ul><ul><li>Fuel and engine testing would enable Mars missions and beyond </li></ul>
  8. 8. Fuel Additives <ul><li>Tungsten compatible materials </li></ul><ul><ul><li>Provide desirable mechanical properties </li></ul></ul><ul><ul><ul><li>Reduce brittleness, improve toughness </li></ul></ul></ul><ul><ul><ul><li>Adjust ductile to brittle transition </li></ul></ul></ul><ul><ul><li>Stabilizers </li></ul></ul><ul><ul><ul><li>Decrease fission product migration </li></ul></ul></ul><ul><ul><ul><li>Reduce UO 2 fuel inventory </li></ul></ul></ul><ul><li>Candidate materials </li></ul><ul><ul><li>Examples: Re, Mo, ThO 2 , Gd 2 O 3 </li></ul></ul>
  9. 9. Cross Section (Probability) <ul><li>Various modifiers </li></ul><ul><ul><li>Particle energy </li></ul></ul><ul><ul><li>System temperature </li></ul></ul><ul><ul><li>Target atom </li></ul></ul><ul><li>Types of interactions </li></ul><ul><ul><li>Scattering </li></ul></ul><ul><ul><ul><li>Elastic </li></ul></ul></ul><ul><ul><ul><li>Inelastic </li></ul></ul></ul><ul><ul><li>Capture </li></ul></ul><ul><ul><ul><li>Absorption </li></ul></ul></ul><ul><ul><ul><li>Fission </li></ul></ul></ul>
  10. 10. Fission Cross Section
  11. 11. Design Benefits of a Fast Reactor <ul><li>Greater power density </li></ul><ul><li>Lighter core design than thermal reactors </li></ul><ul><li>Burn-up of transuranics generated in the reactor </li></ul><ul><li>Reflectors instead of moderating material </li></ul><ul><li>Fast reactors can be controlled using the reflector systems with control drums </li></ul>
  12. 12. Maintaining Thermal Subcriticality <ul><li>Boron-carbide control drums absorb excess neutrons </li></ul><ul><li>Melting of the core would put it in a non-critical state </li></ul><ul><li>Loss of the beryllium reflector ensures the reactor cannot go critical </li></ul><ul><li>Addition of tungsten and rhenium absorb neutrons at the thermal energies 4 to 5 orders of magnitude greater than carbon </li></ul>
  13. 13. Thermal Poison: Rhenium-187
  14. 14. Fuel Element Design (Past & Present) 19-Hole Design (2 mm) 5-Fin Design (3 mm) Dumbo Design
  15. 15. Cooling the Reactor System
  16. 16. Accident Scenarios for Homogenous Core Design  k = 0.003 k is normalized to critical configuration Configuration k eff Basic Core Criticality -- Boron Drums Closed 0.931 Bare Core 0.696 Configuration k eff Reflectors w/ Drums Closed -- Freshwater 0.977 Seawater* 0.976 Dry Sand 0.985 Fused Silica (Dry, 5-m) 0.995 Wet (Freshwater) Sand 0.986 Wet (Seawater) Sand* 0.983 Configuration k eff Without Reflectors -- Freshwater 0.955 Seawater* 0.926 Dry Sand 0.980 Fused Silica (Dry, 5-m) 1.065 Wet (Freshwater) Sand 1.000 Wet (Seawater) Sand* 0.985
  17. 17. Rocket Operation Parameters <ul><li>Single Reactor </li></ul><ul><li>Specific Impulse = 850 s </li></ul><ul><li>Thrust = 150 kN (34 klbf) </li></ul><ul><li>Temperature = 2300 – 2500 K </li></ul><ul><li>Hydrogen Flow Rate = 18.0 kg/s </li></ul><ul><li>Thermal Power = 650 MW </li></ul><ul><li>Cermet: W-Re(6.5 w/o)-UO 2 (60 v/o, 93% HEU) </li></ul>
  18. 18. Specific Impulse Comparison
  19. 19. Reactor Controls <ul><li>Requires semiautonomous controls </li></ul><ul><li>Requires knowledge of real-time status </li></ul><ul><ul><li>Neutron or gamma flux </li></ul></ul><ul><ul><li>Power level </li></ul></ul><ul><ul><li>Dose </li></ul></ul><ul><ul><li>Temperature </li></ul></ul><ul><ul><li>Propellant flow </li></ul></ul><ul><ul><li>Strain/deformation </li></ul></ul>
  20. 20. Measuring Flux, Power, and Dose <ul><li>Direct detection </li></ul><ul><ul><li>Requires detector to differentiate between neutrons and gammas </li></ul></ul><ul><ul><li>Gamma detectors </li></ul></ul><ul><ul><ul><li>Correlated to neutron flux and power level </li></ul></ul></ul><ul><li>Indirect detection </li></ul><ul><ul><li>Neutron thermometer </li></ul></ul><ul><ul><ul><li>Interpolation from temperature gradient information </li></ul></ul></ul><ul><ul><li>Gamma thermometer </li></ul></ul><ul><ul><ul><li>Only viable candidate for in-core detection </li></ul></ul></ul>
  21. 21. Temperature Measurements <ul><li>Require temperature profile of core, propellant, and fuel elements </li></ul><ul><li>Thermocouples can function in high temperature, high radiation environments </li></ul><ul><li>Fiber Bragg Gratings as developed by Luna Innovations deal with relatively high temperatures (~1100 °C) and high dose (8.7 x 10 8 Gy gamma) </li></ul><ul><li>Higher temperatures use platinum-rhodium and tungsten-rhenium thermocouples (>2700 K) but decalibrate with neutron exposure </li></ul><ul><ul><li>Johnson noise thermometry </li></ul></ul><ul><ul><ul><li>Mean kinetic energy of atomic ensemble </li></ul></ul></ul><ul><ul><ul><li>Needs preamplifier electronic development </li></ul></ul></ul>
  22. 22. Propellant Flow <ul><li>Flow from storage tanks </li></ul><ul><li>Flow through turbomachinery </li></ul><ul><li>Propellant flow necessary for rocket thrust </li></ul><ul><li>Also necessary for cooling non-fuel reactor components to prevent damage </li></ul><ul><li>Extensive modeling available through programs such as FLUENT </li></ul>
  23. 23. Strain/Deformation <ul><li>Important for k eff – expansion yields negative reactivity and contraction yields positive reactivity </li></ul><ul><li>In ground vacuum chamber testing, can use CCD camera to measure </li></ul><ul><li>Gleeble testing of components </li></ul><ul><li>Luna Innovation’s fiber optics can also measure strain – only tested at low temperatures </li></ul>
  24. 24. Nuclear Dosimetry using MCNP5 <ul><li>Turbomachinery – SS </li></ul><ul><ul><li>Neutron </li></ul></ul><ul><ul><ul><li>1.2 ± 0.3x10 9 cm -2 *s -1 </li></ul></ul></ul><ul><ul><ul><li>2.1 ± 0.4x10 4 rem*hr -1 </li></ul></ul></ul><ul><ul><li>Photon </li></ul></ul><ul><ul><ul><li>3.4 ± 0.3x10 9 cm -2 *s -1 </li></ul></ul></ul><ul><ul><ul><li>6.8 ± 0.7x10 3 rem*hr -1 </li></ul></ul></ul><ul><li>Payload – H 2 O </li></ul><ul><ul><li>Neutron </li></ul></ul><ul><ul><ul><li>0 </li></ul></ul></ul><ul><ul><li>Photon </li></ul></ul><ul><ul><ul><li>0 </li></ul></ul></ul>ZH 2
  25. 25. Summary <ul><li>Tungsten-Cermet fuels demonstrate potential for long-lived, high Isp, nuclear rockets with high-integrity containment of uranium and fission products </li></ul><ul><li>Fuels development and testing necessary to confirm potential of tungsten-cermet fuels in reactors for NTRs </li></ul>W

×