Secuencia didactica bloque iii la transformacion de los materiales

4,514 views

Published on

1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total views
4,514
On SlideShare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
123
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Secuencia didactica bloque iii la transformacion de los materiales

  1. 1. SECUENCIA DIDÁCTICA Bloque III. La transformación de los materiales: la reacción química Tema 2. La medición de las reacciones químicas. Subtema 2.1 ¿Cómo contar lo lo muy pequeño? 2.1 ¿Cómo contar muy pequeño? • Las dimensiones del mundo químico. Las dimensiones del mundo químico. • El vínculo entre los sentidos y el microcosmos. vínculo entre los sentidos y el • Número y tamaño de partículas. Potencias de microcosmos. • 10. Número y tamaño de partículas. Potencias • El mol como unidad de medida. de 10. • El mol como unidad de medida. Aprendizajes esperados • Compara la escala humana con la astronómica y la microscópica. • Representa números muy grandes o muy pequeños en términos de potencias de 10 y reconoce que es más sencillo comparar e imaginar dichas cantidades de esta manera. • Explica y valora la importancia del concepto de mol como patrón de medida para determinar la cantidad de sustancia. ANTECEDENTES/IDEAS PREVIAS Antecedentes Ciencias Naturales. Primaria., Sexto grado, Bloque 4 ¿Adónde vamos?, Lección 31 “Las habilidades científicas”. Ciencias I. Bloque I, tema 3, subtema 3.2 “Implicaciones del descubrimiento del mundo microscópico y de la célula como unidad de los seres vivos”. Ciencias II. Bloque I, tema 3 Proyecto 3 ¿Cómo potenciamos nuestros sentidos para conocer más y mejor? (ámbito del conocimiento científico y la tecnología); bloque III, tema 1, subtema 1.1 “Características de la materia. ¿Qué percibimos de las cosas?” y del bloque V, proyecto 1 “La Física y el conocimiento del Universo”. Ciencias III. Bloque I, tema 1, subtema 1.2 “Características del conocimiento científico: el caso de la Química”; subtema 2.1 “¿Qué percibimos de los materiales?” y subtema 2.2. “¿Se pueden medir las propiedades de los materiales?”. Ideas Previas* • Dierks (1981) sugiere que “…se acepta en general,…que los estudiantes necesitan tener un concepto claro de lo que significa cantidad de sustancia, si van a trabajar de manera exitosa con este concepto. Tal parece que dicho concepto sólo puede desarrollarse cuando la cantidad de sustancia se interpreta como una cantidad numérica”. • Boujaoude y Barakat (2000) recomiendan a los profesores que ayuden a los estudiantes a desarrollar relaciones claras entre las ideas antes de plantearles problemas numéricos. Analizar cómo enfocan la Estructura de Secuencia Didáctica éstos estimulen el pensamiento y no meras aplicaciones de algoritmos. resolución de problemas y que * Kind, Vanessa, (2004), “Capítulo 9. Dificultades de los estudiantes con la estequiometria”, en Más allá de Propósitos las apariencias. Ideas previas de losActividades sobre conceptos básicos de química, México, D.F., SEP/Edit. estudiantes Evaluaciónne e c a Santillana/Biblioteca para la actualización del maestro, pp. 98, 99. 1
  2. 2. Tipo/Productos Criterios Identificar las ideas Actividad 1 ¿Medir o contar? Evaluación diagnóstica: Comunica, escucha y previas de los Preguntas acerca de la conveniencia Identificación de las ideas discute sus ideas ExplorativoINICIO alumnos acerca de de medir la masa o contar objetos previas de los alumnos la utilidad de medir pequeños. acerca de la utilidad de la masa de objetos medir la masa de objetos pequeños o pequeños o contarlos. contarlos. Identificar las ideas Actividad 2 “Entre dos infinitos”. Evaluación formativa Adecuada comprensión de los alumnos Lectura del texto y planteamiento de Comprensión lectora y lectora y planteamiento acerca de las preguntas planteamiento de preguntas. de preguntas. escalas humana, Actividad 3 astronómica y ¿Escala humana, astronómica o Identificación correcta de las Comunicación de microscópica. microscópica? escalas humana, astronómica resultados y correcta Comparación y clasificación de y microscópica. identificación de Identificar las imágenes de diversos objetos a escala escalas. dimensiones del humana, astronómica y microscópica. mundo de la Actividad 4“De diez en diez” Expresión de números muy Expresión correcta de química. Identifica la importancia de la grandes o muy pequeños en notación científica notación científica al expresar notación científica Reconocer la cantidades muy grandes o muy Comunicación de necesidad de pequeñas al completar una tabla de Respuestas a preguntas resultados y reflexión Explicativo y Microscópico utilizar datos. planteadas y reflexión acerca acerca de la utilidad de instrumentos de Actividad 5 de la conveniencia de una una unidad de medida.DESARROLLO medición. “Nol para entender el Mol” unidad de medida. “¿Qué es un nol? Identificación correcta Identificar la Actividades previas para el desarrollo Identificación de relaciones de relaciones utilidad de la gradual de las ideas de los alumnos y cuantitativas de cuantitativas de notación científica tener una aproximación al concepto proporcionalidad. proporcionalidad. al expresar números de mol. muy grandes o muy Actividad 6 Reporte de la actividad Relación correcta entre pequeños. “Vislumbrando ¿qué es el mol? experimental. la masa de una A).- “Ciruelas y uvas” sustancia y el número Desarrollar el Identifica las relaciones cuantitativas Presentación de resultados y de partículas. concepto de mol de proporcionalidad mediante un explicación del concepto de como unidad de ejemplo. mol. Explicación del cantidad de B) Actividad experimental concepto de mol como sustancia. Identifica la relación entre diferentes Elaboración de unidad de medida de masas y número de objetos como conclusiones. cantidad de sustancia. antecedente del concepto de mol. C).-“¿Qué es un mol? Integra sus conocimientos y valora la importancia del concepto de mol en la Química, como la unidad de medida de la cantidad de sustancia. Integrar y valorar lo Actividad 7 Evaluación sumativa. Análisis de los aprendido durante “¿Qué aprendí?” Mapa conceptual aprendizajes logrados. Argumentativo la secuencia con Integra y valora sus conocimientos Relación yCIERRE respecto a la acerca del concepto de mol, analiza jerarquización de ideas importancia de la sus aprendizajes y los expresa en un acerca del mol. medición y al mapa conceptual concepto de mol. ESTRUCTURA DE LA SECUENCIA DIDÁCTIC 2
  3. 3. Actividades sugeridas Tiempo estimado: 6 horasActividad 1.Previamente se comentará con los alumnos los aprendizajes esperados de la secuencia:¿cómo contar lo muy pequeño?, qué se quiere lograr, mediante qué actividades y cómo seevaluará.¿Medir o contar? Tiempo estimado: 15 min Orientación didáctica El profesor realizará unas preguntas a los alumnos para explorar sus ideas previas acerca de la utilidad de “medir la masa o contar objetos muy pequeños”, de acuerdo a las características del tipo de materia en cada situación expuesta, haciendo explícitos sus razonamientos.¿Qué es mejor?... • ¿Medir la masa o contar la cantidad de semillas de alpiste que se dará de comer a las aves de un zoológico durante un mes? • ¿Medir la masa de una gran cantidad de arroz necesario para preparar una paella o contar la cantidad de granos? ¿por qué? • ¿Medir la masa o contar la cantidad de cristales de azúcar necesarios para endulzar un refresco? • ¿Medir la masa o contar la cantidad de granos de sal extraída del mar?Mediante lluvia de ideas, el profesor recopilará las principales ideas previas de los alumnosen una lámina, para tomarlas en cuenta posteriormente.Evaluación diagnóstica: Por medio de la participación de los alumnos, el profesor se darácuenta de la facilidad de abstracción que tienen para identificar que, de forma indirecta, sepuede medir la masa contando o viceversa. Esta posibilidad comprendida inicialmente conejemplos macroscópicos -objetos identificables- será indispensable para comprenderposteriormente la idea de mol y su utilidad.Actividades de desarrolloActividad 2.“Entre dos infinitos” Tiempo estimado: 30 minSolicite que lean el siguiente fragmento del texto “Entre dos infinitos”, para propiciar elinterés de los alumnos acerca de la escala humana, la astronómica y la microscópica.1Posteriormente los alumnos en equipos pequeños, se reunirán para plantear tres preguntascon relación al texto.1 García, Horacio, “Entre dos infinitos” en El universo de la Química, México, D.F. 2000 Primera edición,SEP/Editorial Santillana/Libros del Rincón, pág. 16-17. 3
  4. 4. “Entre dos infinitos” Blas Pascal (1623-1662), matemático y filósofo francés, decía, no sin angustia, que todos los seres humanos viven entre dos infinitos. Uno era el infinitamente grande, formado por las estrellas, galaxias y nubes estelares, y otro el infinitamente pequeño mundo de los átomos. Hoy sabemos que efectivamente el universo es infinito, pero que el mundo de las células, moléculas, átomos y partículas es increíblemente diminuto, pero finito. Existen las partículas subatómicas y una de ellas, la más pequeña, el electrón, tiene una masa y una carga eléctrica definida y limitada. En ambas direcciones se proyecta la inteligencia humana en busca de comprensión y conocimiento de sus características, propiedades y naturaleza. En ambas, la química es una herramienta indispensable para alcanzar esos objetivos. El astrofísico, que ha sustituido al astrónomo en el estudio profundo del universo se preguntó: ¿cuál es la composición de la materia estelar? El análisis químico realizado con el espectroscopio y otros aparatos más modernos, le dio respuestas. Encontró que más de 98% de toda la materia estelar está formada por el elemento más sencillo que existe, el hidrógeno, cuya representación química o símbolo es H. La interacción de esos elementos y de las condiciones físicas de temperatura y presión se fue haciendo más compleja a lo largo de miles de millones de años hasta llegar a constituir los primeros seres vivos. De las estrellas procede la materia que nos constituye, somos polvo de estrellas. Tú, yo y todo los seres humanos, los animales y las plantas nos encontramos en medio de esas dimensiones: la infinita del cosmos y las pequeñísimas del mundo de los átomos. Gracias al quehacer de los hombres y mujeres que se ocupan de alcanzar el conocimiento en las diversas áreas de la ciencia, la inteligencia humana ha alcanzado a identificar sucesos que ocurrieron hace 16 000 000 000 de años y a predecir lo que ocurrirá dentro de 5 000 000 000 de años a partir de ahora.Elegir un representante del equipo para que compartan con los demás compañeros laspreguntas que plantearon, así como sus respuestas.Actividad 3 Tiempo estimado: 40 min¿Escala humana, astronómica o microscópica?Pedir a los alumnos que comparen imágenes de partículas, objetos cotidianos yastronómicos según su magnitud; el propósito es que clasifiquen si el objeto pertenece a laescala humana, astronómica o microscópica, también tienen que indicar ¿qué instrumentose necesita para visualizarlo? 4
  5. 5. Sol Tierra Venus Marte Mercurio La luna Asteroides1,390,000km 12742km 12104 km 6780km 4880km 3474 km 530 km a 326 kmEscala___________________________ ¿Se observa a simplevista?_____________________ ¿Requiere instrumentos para visualizarlos? ¿Cuáles?__________________________Escala___________________________ ¿Se observa a simplevista?_____________________ ¿Requiere instrumentos para visualizarlos? ¿Cuáles?________________________________________Escala___________________________ ¿Se observa a simplevista?_____________________ ¿Requiere instrumentos para visualizarlos? ¿Cuáles?________________________________________ 5
  6. 6. Escala___________________________ ¿Se observa a simplevista?_____________________ ¿Requiere instrumentos para visualizarlos? ¿Cuáles?________________________________________Escala___________________________ ¿Se observa a simplevista?_____________________ ¿Requiere instrumentos para visualizarlos? ¿Cuáles?________________________________________Al terminar de clasificar las imágenes, los alumnos comentarán sus resultados con losdemás equipos y el resto del grupo. Es importante que destaquen las dificultades queexisten para hacer las mediciones en las escalas más grandes y más pequeñas y quepropongan ideas para aproximar los resultados. El profesor debe orientar a los alumnos a lareflexión de sus conocimientos en relación a las escalas humana, astronómica ymicroscópica en la Química.Actividad 4.“De diez en diez” Tiempo estimado: 50 minLas cifras de números muy grandes o muy pequeños, se expresan en forma simplificadallamada notación científica. A continuación se presentan algunos ejemplos de magnitudesen la vida cotidiana. Pedir a los alumnos que reunidos en equipos, escriban las cantidadesque se muestran utilizando la notación científica; para ello tienen que usar las tablas demúltiplos y submúltiplos. 6
  7. 7. • La velocidad de la luz es de trescientos millones de metros por segundo,300 000 000 m/s.________________________________________________________________• Si hablamos de grandes cantidades de bytes, se puede decir que la capacidad de almacenamiento de datos de una gran computadora es de 500 Terabytes, o sea, una cantidad equivalente a ________________________bytes.• Si nos referimos a la longitud de onda de los rayos cósmicos, se podría decir que su medida es inferior a 0,000000000000001 metros, la cual se puede representar como _______________________________________________________________Al leer textos científicos o técnicos las cifras aparecen escritas de forma simplificada,utilizando un procedimiento matemático denominado “notación científica”. Por ejemplo:La velocidad de la luz es de 3x108 m/sLa capacidad de almacenamiento de datos de una computadora es de 5x1014 bytesLa longitud de onda de los rayos cósmicos es inferior a 1x10-14 metrosComo te habrás dado cuenta, de acuerdo a tus conocimientos en Matemáticas y aunado a laactividad anterior, es conveniente utilizar notación científica o exponencial con lasunidades pertenecientes al Sistema Internacional de Unidades (SI), ya sean múltiplos osubmúltiplos, que tienen como base el sistema decimal, es decir aumentan o disminuyen dediez en diez con respecto a la unidad, hasta llegar a mil y después el incremento odecremento es de mil en mil indicado por un prefijo y el nombre de la unidad, como sepuede observar en las tablas siguientes. Múltiplos Prefijo Símbolo Valor en unidades Significado Notación científica deca da 10 Diez veces la unidad 1×10¹ hecto h 100 Cien veces la unidad 1×10² kilo k 1 000 Mil veces la unidad 1×10³ mega M 1 000 000 Un millón de veces la unidad 1×106 giga G 1 000 000 000 Mil millones de veces la unidad 1×109 tera T 1 000 000 000 000 Un billón de veces la unidad 1×1012 Submúltiplos Prefijo Símbolo Valor en unidades Significado Notación científica deci d 0.1 décimas de unidad 1×10-1 centi c 0.01 centésimas de unidad 1×10-2 mili m 0.001 milésimas de unidad 1×10-3 micro µ 0.000001 millonésimas de unidad 1×10-6 nano n 0.000000001 mil millonésimas de unidad 1×10-9 pico p 0.000000000001 billonésimas de unidad 1×10-12 femto f 0.000000000000001 mil billonésimas de unidad 1×10-15 atto a 0.000000000000000001 trillonésimas de unidad 1×10-18 7
  8. 8. Indicar a los alumnos que en equipo, completen la siguiente tabla2 con el valor en unidadesy su notación científica para que al final comparen resultados y valoren la utilidad de lanotación científica. Posteriormente solicitar que realicen sus comentarios ante suscompañeros de equipo y de grupo. Ejemplo Múltiplo/ Valor en unidades Notación submúltiplo científica Un camión ligero 2 Mg Masa media de una mujer 50 kg Cucharada de agua 5g Grano de sal 100 µ Masa del punto sobre esta i 50 ng Partícula de humo 1 pg Molécula humana de ADN 1 fg Molécula de azúcar 5.68 ×10-22g Átomo de hidrógeno 1.67×10-24g Electrón 0.91×10-27gUna vez que hayan completado la tabla anterior, comenten y valoren la utilidad de expresary comparar magnitudes muy grandes y muy pequeñas mediante la notación científica.Como parte de la evaluación de esta sesión es importante revisar los ejercicios realizadospor los estudiantes. También pueden plantearse algunas preguntas al grupo en general paraque sean respondidas por distintas personas, comprobando que han asimilado cómomanejar la notación científica, pues de aquí en adelante será de gran utilidad paracomprender el manejo numérico y situar los fenómenos en su justa dimensión.Actividad 5“El Nol para entender el Mol” Tiempo estimado: 60 minutos Orientación didáctica El mol no forma parte de la vida cotidiana, es la unidad de medida de cantidad de sustancia y por lo tanto constituye conocimiento científico de difícil comprensión para los alumnos de secundaria, por ser un concepto abstracto. Es por ello que se requiere establecer relaciones y “puentes” de manera gradual entre cantidad de sustancia y mol, para que los alumnos vayan aprendiendo de manera significativa.Se recomienda para las siguientes actividades, que el trabajo sea en equipo, realicencomentarios al interior de los mismos y pongan en común lo que comprendieron.¿Qué es un nol? (I).32 Cfr.SEP, Libro para el Maestro. Educación Secundaria Química, SEP/CONALITEG, México, 1996, p. 413 SEP, “¿Qué es un nol?”, en Enseñanza de las Ciencias a través de Modelos Matemáticos. Química, México,2000, SEP/CONALITEG, pág. 37-39 8
  9. 9. En química, la cantidad de una sustancia se mide en la unidad llamada “mol”. Estaactividad tiene como propósito presentar una analogía que sirva de antecedente paracomprender de manera paulatina el significado de esta medida (mol).Para simplificar las ideas, usaremos al principio una versión reducida del mol, al quellamaremos “el nol” y definiremos como sigue: Un NOL de algo es la cantidad de ese algo que contiene exactamente 60 unidades.Así, por ejemplo, un nol de tortillas son 60 tortillas, un nol de jitomates son ______jitomates.De acuerdo a lo anterior, realiza las siguientes conversiones: 3 noles de lápices contienen ________________lápices. 300 canicas equivalen a ___________________nol de canicas. 0.5 noles de monedas contienen ____________monedas. 90 naranjas equivalen a ___________________nol de naranjas.Una tienda de mayoreo desea vender todos sus artículos en la unidad llamada nol. Paraesto, necesita saber la masa de un nol de cada una de sus mercancías. Responde a laspreguntas siguientes:• ¿Qué masa tiene un nol de tortillas si se sabe que en 1 kg hay 30 tortillas? _______________________________________________________________• ¿Qué masa tiene un nol de manzanas sabiendo que 5 manzanas equivalen a 1 kg? _______________________________________________________________• ¿Qué masa tiene un nol de hojas de papel sabiendo que 300 hojas equivalen a 1 kg? _________________________________________________________• ¿Qué masa tiene un nol de vasos de papel sabiendo que 25 vasos equivalen a 50 g?___________________________________________________________Con la información anterior, llena la siguiente tabla (algunos de los artículos tendrán quemedir su masa en clase o en casa para poder completar la tabla): Masa en kg. Artículo: de un nol: Tortillas Manzanas 12 Hojas de papel Vasos de papel 0.12 (120 g) Canicas Frijoles Naranjas 9
  10. 10. Una fruta en la tienda tiene el letrero: “30 kg. por nol”. ¿Es una fruta más grande o máspequeña que una manzana? _________________________ ¿Cuál es la masa de cada una deestas frutas? __________________ ¿Cuál fruta crees que es? _______________________Completa la siguiente tabla para las manzanas: Cantidad total de Cantidad de nol: Masa en kg: manzanas: 60 30 15 0.1 3 1Completa la siguiente tabla para las hojas de papel: Cantidad total de Cantidad de nol. Masa en kg. hojas de papel. 60 0.2 5 0.5 600 0.5 10¿En dónde hay más unidades: en 10 nol de manzanas o en 10 nol de hojas de papel?__________________________________________________________________¿Cuál tiene mayor masa?__________________________________________________________________¿Cuántas veces más?__________________________________________________________________Es muy importante cerciorarse que, tanto los cálculos como la lógica de los mismos, seancomprendidos en este ejemplo con cantidades y objetos que el alumno puede imaginar. Paraello, a manera de evaluación, revise los ejercicios anteriores o plantee otros similares paraque sean respondidos de forma individual, ya sea oralmente o por escrito.Actividad 6 “Vislumbrando ¿qué es el mol?” Orientación didáctica Esta actividad “Ciruelas y uvas” tiene la intención de que los alumnos identifiquen relaciones de proporcionalidad. La actividad “Comprendiendo el concepto de mol” tiene el propósito de que los alumnos, en primera instancia, construyan de manera gradual el concepto de mol, por medio de una actividad experimental y posteriormente en “¿Qué es un mol?” reflexionen sobre su significado y uso en la Química. Es muy importante valorar la participación activa de todos los alumnos. 10
  11. 11. Con la siguiente actividad se espera que puedan responder ¿qué es el mol?El mol se define como…”La unidad de medida de cantidad de sustancia”.Cuando se usa el mol, las entidades elementales deben ser especificadas, pudiendo ser6.02x1023 átomos, moléculas, iones, electrones, otras partículas o grupos específicos detales partículas.Para que te des una idea, imagina que pudieras encadenar un mol de clips (6.02 × 10²³clips) uno con otro y enrollar la cadena alrededor del mundo. Le daría la vuelta al planetacerca de 400 billones de veces.Un mol de malvaviscos cubriría los Estados Unidos hasta una altura de 1050 km.Un mol de canicas de 2 cm de diámetro cada una formaría una montaña cuya altura sería116 veces la del Monte Everest.No obstante lo grande que es un mol, si por ejemplo bebieras un mol de moléculas de agua,esta cantidad te dejaría bastante sediento en un día caluroso. Un mol de agua es menos deun décimo de una taza de agua: sólo 18 g (o 18 mL) de agua.1A) “Ciruelas y uvas”4 Tiempo estimado para la actividad: 30 min Orientación didáctica Diversos artículos han analizado el contenido de los libros de texto sobre el tema (Ceverllati y otros, 1982; Furió y otros, 1999), llegando a la conclusión de que diversos libros todavía emplean la equívoca definición de mol como <<el peso molecular expresado en gramos>>, o que es <<como un número>>, <<como la docena del químico>>. Asimismo no se identifica a este concepto explícitamente con cantidad de sustancia, término que rara vez aparece en los textos, al extremo de mencionarse en los problemas <<calcular el número de moles>> en lugar de <<calcular la cantidad de sustancia>>(Mills, 1989). Garritz, Andoni, et al (2002), El mol: un concepto evasivo. Una estrategia didáctica para enseñarlo. Alambique. Didáctica de las Ciencias Experimentales. No. 33. Pp. 99-109.Esta actividad se presenta para que los alumnos en equipos identifiquen las relacionescuantitativas de proporcionalidad.El profesor debe solicitar a los alumnos que trabajen en equipo, realicen la lectura ycontesten las preguntas, para después presentar sus respuestas.Piensas hacer una ensalada de frutas que tenga, entre otras cosas, el mismo número deciruelas que de uvas. Llegas a la tienda y pides al vendedor treinta uvas y treinta ciruelas.Este, quien tiene una tozudez característica, te responde: <<aquí vendemos fruta por kilos.¿Cuántos kilos de ciruela y cuántos kilos de uva desea?>>.¿Qué hacer en este caso para salir de la tienda con treinta uvas y treinta ciruelas?4 Garritz, Andoni, et al (2002), El mol: un concepto evasivo. Una estrategia didáctica para enseñarlo.Alambique. Didáctica de las Ciencias Experimentales. No. 33. Pp. 99-109. 11
  12. 12. Supones, para empezar, que cada ciruela tiene la misma masa que las otras ciruelas y quecada uva tiene la misma masa que cualquiera de las otras uvas.Pides un kilo de ciruelas. Cuentas las ciruelas que te dieron y encuentras que son quince.Pides ahora un kilo de uvas. Vuelves a contar cuidadosamente y son ciento veinte uvas.Haces el siguiente cociente: 120 uvas/kg 8 uvas --------------- = ----------- 15 ciruelas/kg 1 ciruelaQueda claro ahora que una uva pesa la octava parte de una ciruela. Tienes entonces la masarelativa de las ciruelas, con respecto al patrón “uva”:W ciruela 8------------ = ---W uva 1Ocho uvas tienen la misma masa que una ciruela. Para pedir la misma cantidad de uvas yciruelas debes pedir por lo tanto, la octava parte de uvas que de la masa de las ciruelas. Estoes lo básico en este ejemplo: contienen el mismo número de frutas las dos muestras, o sea,tanto una muestra dada de ciruelas que equivale ocho veces lo que otra muestra de uvas,como esa muestra de uvas. Por lo tanto, la masa relativa nos permite conducir siempre amuestras con el mismo número de frutas.Calculas rápidamente que para tener treinta ciruelas requieres de dos kilos y, por supuesto,para contar con treinta uvas necesitas la octava parte de los dos kilos. Inteligentemente ledices ahora al vendedor: <<Sabe, voy a necesitar otro kilo más de ciruelas y, además, nonecesito tantas uvas, póngame solamente un cuarto de kilo>> García Cifuentes (1997)Así, el mol se introduce como la unidad básica de la magnitud cantidad de sustancia y lapremisa del concepto de mol se ha interpretado como contar partículas mediante la masa(Dominic 1996).Preguntas: ¿Qué fue lo más interesante de la lectura? ¿Cuál es la ventaja de utilizar el mol como unidad de cantidad de sustancia? Para ti ¿qué es establecer proporciones? Da un ejemplo de proporciones y explica ¿por qué lo consideras como tal?B) “Comprendiendo el concepto de mol”5 Tiempo estimado: 50 min5 Cfr. CATALÁ, Rodes Rosa María y Ma. Eugenia Colsa Gómez. (1997), “Una unidad nueva”, en Libro derecursos para el profesor Química 2, Edit. Santillana, Cuarta reimpresión, México, D. F., p. 150. 12
  13. 13. Orientación didáctica Ante la imposibilidad de contar o determinar la masa de átomos y moléculas, lo que se requiere es encontrar la relación entre la cantidad de sustancia y la masa. De igual manera si se dispone del uso de computadoras, se recomienda realizar algunos experimentos de simulación en las siguientes ligas: http://catedu.es/cienciaragon http://www.chemcollective.org/applets/stoich.phpActividad experimental¿Qué necesitamos?1 taza de granos de arroz1 taza de frijoles1 taza de lentejas1 balanza granataria6 moldes pequeños de gelatina¿Cómo lo vamos a hacer?1.- Forma un equipo de tres o cuatro integrantes y reúnan el material necesario. Midan conla balanza granataria la masa de 25 granos de arroz, 25 frijoles y 25 lentejas en diferentesmoldes de gelatina. No olviden restar el valor del recipiente para obtener la masa de cadaconjunto.2.- Registren en la tabla los valores que obtuvieron. A esta nueva unidad que posee 25elementos le llamaremos mec, de manera que ahora disponen de 1 mec de arroz, 1 mec defrijoles y 1 mec de lentejas.3.- Coloquen en cada uno de los restantes recipientes 5.2 mecs de arroz, 0.5 mec de frijolesy 12 mecs de lentejas. Utilicen la balanza, no cuenten los granos. Realicen los cálculosutilizando los datos de las primeras mediciones.¿Qué ocurrió?Registren los resultados completen la tablaSemillas Núm. de granos Núm. de mecs Masa en gramos Arroz 25 1 Frijol 25 1 Lenteja 25 1 Arroz 5.2 Frijol 0.5 Lenteja 12Después de calcular el número de granos, cuéntenlos y contesten¿Qué similitudes encuentras entre un mec y un mol?¿Hay diferencias entre los valores calculados y los obtenidos experimentalmente?¿A qué se debe? 13
  14. 14. Comenten en el interior del equipo y con el resto del grupo si con esta actividad identificanla utilidad del mol como unidad de cantidad de sustancia.Los átomos son partículas extraordinariamente pequeñas y por eso no es posible percibirlasa simple vista y mucho menos contarlas, aunque hoy, gracias a los avances científicos ytecnológicos, es posible, observar su sombra a través de aparatos muy potentes, conocidoscomo “microscopios de efecto túnel”. Orientación para el profesor En una cadena de 10 g de átomos de oro o en un anillo de plata hay muchos átomos, por lo que necesitamos algo más grande que una gruesa o un millar para contarlos. Para esto fue necesario definir una unidad de cantidad de materia. La unidad que se utiliza para medir la cantidad de materia se llama mol. La palabra mol proviene de mole, pila o montón. Se utilizó en este contexto para indicar que el número de partículas contenidas en un mol es enorme. Para saber cuántos átomos hay en un mol, se estiman los átomos que hay en 12 gramos de carbono -12. Los científicos han determinado por métodos indirectos que la masa de un átomo de C-12 es 1.992 × 10 -²³ g. Esto quiere decir que en 12 g de C-12 hay: 12 g de C-12 = 6.02 ×10²³ átomos de carbono 12 1.992 ×10-²³ g de C-12 Átomo de C-12 En 12 gramos de C-12 hay 6.02 × 10²³ átomos. Por tanto un mol de átomos es igual que 6.02 × 10²³ átomos. En general podemos decir que en un mol hay 6.02 × 10²³ unidades (partículas, moléculas, iones, átomos, electrones). 1 mol= 602 000 000 000 000 000 000 000 A esta relación se le conoce como el número de Avogadro y también se puede representar como 6.02 × 10²³ unidades/molLos alumnos formarán pequeños grupos, cambiándose de equipo para que no queden losmismos elementos y así pueda haber rotación de roles, interacciones diferentes y mayorenriquecimiento en sus aprendizajes; realizar la hoja de trabajo ¿qué es un mol? de lasactividades de Enseñanza de las Ciencias a través de Modelos Matemáticos (ECAMM).C).- ¿Qué es un mol?6 Tiempo estimado: 30 min Orientación didáctica El profesor debe orientar a los alumnos para que logren la integración de sus conocimientos y valorar la importancia del concepto de mol en la Química, como la unidad de medida.En química, el mol, es la cantidad de sustancia (química) que contiene un númerodeterminado de partículas (átomos o moléculas). La pregunta es: ¿qué cantidad departículas sería conveniente para esta unidad? ¿Mil? ¿Un millón?Pensemos en lo siguiente: la masa en gramos de un átomo de carbono (C) esaproximadamente: Masa átomo de carbono ≈ 2 × 10-23 g6 SEP, “¿Qué es un mol?”, en Enseñanza de las Ciencias a través de Modelos Matemáticos. Química,México, 2000, SEP/CONALITEG, pág. 40-42 14
  15. 15. Así por ejemplo, si tomáramos al mol como un millón (106) de partículas, un mol deátomos de carbono tendría una masa de: Masa de 1, 000,000 de átomos de carbono ≈ 106 × 2 × 10-23 g = _________________Notarás que sigue siendo una cantidad insignificante.Una buena idea sería tomar al mol como 1023 partículas para eliminar el exponente –23 dearriba. Si fuera así, tendríamos que un mol de átomos de carbono tendría una masa de: Masa de 1023 átomos de carbono ≈ 1023 × 2 × 10-23 g = _______________________Este resultado de 2 g ya es una cantidad razonable para trabajar con ella.Pero recordemos que la masa atómica del carbono es de 12 unidades. Así, una mejor ideapara que el mol contenga esta cantidad en gramos sería tomar al mol como seis veces más,es decir, 6 × 1023 partículas. Con esto: Masa de un mol de átomos de carbono = __________ Masa de 6 × 1023 átomos de carbono ≈ 6 × 1023 × 2 × 10-23 g = __________Por su conveniencia, ésta es la medida que se utiliza en química. Se define como sigue: 1 mol es la cantidad de sustancia que contiene 6 × 1023 partículasNota que el mol representa un número enorme de partículas: 6 × 1023 partículas = 600, 000, 000, 000, 000, 000, 000, 000 partículasAsí, la masa de un mol de átomos de carbono es de 12 gramos, que coincide con el valor desu masa atómica. ¿Será cierto para otros elementos? Estudiemos otro ejemplo:La masa en gramos de un átomo de calcio (Ca) es aproximadamente: Masa átomo de calcio ≈ 6.67 × 10-23 gAsí tendremos que: Masa de un mol de átomos de calcio = Masa de 6 × 1023 átomos de carbono ≈ 6 × 1023 × 6.67 × 10-23 g = ________La masa atómica del calcio es aproximadamente igual a 40.¿Coincide tu resultado anterior con este valor? ___________________ Así, la masa de unmol de átomos de calcio es de 40 g, que coincide con el valor de su masa atómica.En general podemos escribir: El valor de la masa atómica de un elemento representa la masa en gramos de un mol de ese elemento.El sodio (Na) tiene una masa atómica de 23. Esto quiere decir que un mol de átomos desodio tiene una masa de 23 g. El aluminio (Al) tiene una masa atómica de 27. 15
  16. 16. Esto quiere decir que un mol de átomos de aluminio tiene una masa de________________¿Qué contiene mayor masa: un mol de átomos de carbono o un mol de átomos de calcio?Explica.¿Cuál de ellos tiene mayor número de átomos?__________________________________¿Qué masa tienen 2 mol de carbono? ___________________ ¿Qué masa tienen 2 mol de calcio?________________________________________________________________¿Cuántos mol son 120 g de carbono?__________________________________________________¿Cuántos mol son 120 gramos de calcio?_____________________________________Ahora comenten y comparen sus resultados con los demás equipos y realicen susconclusiones acerca del significado de mol.La evaluación de las tres actividades anteriores, A, B y C, debe hacerse de forma continuapor medio de la revisión del trabajo realizado y de la participación activa de los alumnoscomentando sus dudas y respondiendo preguntas que el profesor plantee para sondear si sevan comprendiendo las ideas.Actividad de cierreActividad 7“¿Qué aprendí?” Tiempo estimado: 40 minutos Orientación didáctica El profesor debe orientar los comentarios de los alumnos para que logren llegar a la reflexión de sus conocimientos y a valorar la importancia del concepto de mol en la Química, como la unidad de medida.A manera de evaluación el profesor les pedirá que en forma individual, elaboren su propiomapa conceptual, acerca del mol y lo confronten con el resto del grupo. Asimismo, lopueden enriquecer con las aportaciones de sus compañeros.Para guiarse en la elaboración del mapa conceptual, no olviden partir del concepto másimportante, retomar el significado de mol de la actividad anterior. Pueden guiarse por lossiguientes cuestionamientos: • ¿Qué es un mol? • ¿Cuál es su utilidad en la Química? • ¿Es mejor medir y/o contar cantidades de objetos muy grandes y partículas muy pequeñas? • Dimensiones y escalas de la Química. • Forma de medir la cantidad de sustancia en la Química. • Considerar al mol como la cantidad de sustancia que tiene 6 × 1023 partículas, átomos o moléculas. • Establecer proporciones. 16
  17. 17. • Ventajas de utilizar el mol como unidad de cantidad de sustancia.Bibliografía consultada. • Catalá, Rodes Rosa María y Ma. Eugenia Colsa Gómez. (1997), “Una unidad nueva”, en Libro de recursos para el profesor Química 2, Edit. Santillana, Cuarta reimpresión, México, D. F., p. 150. • Driver Rosalind, Squires Ann, Rushworth Peter y Wood-Robinson Valerie. (2000), “Capítulo 11. Partículas”, en Dando sentido a la ciencia en secundaria. Investigaciones sobre las ideas de los niños, México, D.F. Primera edición SEP/Visor /Biblioteca para la actualización del maestro, p. 131. • Garritz, Andoni, et al (2002), El mol: un concepto evasivo. Una estrategia didáctica para enseñarlo. Alambique. Didáctica de las Ciencias Experimentales. No. 33. pp. 99-109. • Escalona, Héctor, y otros. (1998), “Conservación en la Naturaleza y en la Comunidad”, en QuímCom. Química en la Comunidad. Versión en español Edit Pearson/Addison Wesley 2ª edición, México, D.F. 1998 pp. 124-125 • García, Horacio. (2000), “Entre dos infinitos” en El universo de la Química, México, D.F. Primera edición, SEP/Editorial Santillana/Libros del Rincón, pp. 16- 17 • Kind, Vanessa, (2004), “Capítulo 9. Dificultades de los estudiantes con la estequiometria”, en Más allá de las apariencias. Ideas previas de los estudiantes sobre conceptos básicos de química, México, D.F., Primera Edición SEP/Edit. Santillana/Biblioteca para la actualización del maestro, pp. 97-99 • SEP, Libro para el Maestro.(1996), Educación Secundaria Química, SEP/CONALITEG, México, p. 41 • SEP, “¿Qué es un mol?”, en Enseñanza de las Ciencias a través de Modelos Matemáticos. Química, México, 2000, SEP/CONALITEG, pp. 37-42 • Vargas Rubicelia, Martínez Vázquez, Ana, Pérez Aguirre Gabriela, “Masas atómicas de los elementos”, en Libro de recursos para el profesor Química 2, Edit. Santillana XXI, Cuarta reimpresión, México, D. F. 2005, pp. 141. 17

×