BIOL 101 Chp 54: Community Ecology

4,138 views

Published on

This is a lecture presentation for my BIOL 101 General Biology I students on Chapter 54: Community Ecology. (Campbell Biology, 10th Ed. by Reece et al).

Rob Swatski, Associate Professor of Biology, Harrisburg Area Community College - York Campus, York, PA. Email: rjswatsk@hacc.edu

Please visit my website for more anatomy and biology learning resources: http://robswatski.virb.com/

Published in: Education
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,138
On SlideShare
0
From Embeds
0
Number of Embeds
1,366
Actions
Shares
0
Downloads
223
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

BIOL 101 Chp 54: Community Ecology

  1. 1. Chapter 54 Community EcologyBIOL 101: Rob Swatski Asst. Prof. BiologyGeneral Biology I HACC - York1
  2. 2. 2 What is a “Community”?
  3. 3. InterspecificInteractions Predation & Herbivory Competition Symbiosis 3
  4. 4. 4
  5. 5. InterspecificCompetition -/- interaction Competitive Exclusion Principle Resource partitioning Ecological niche 5
  6. 6. A. ricordii A. insolitus A. aliniger A. christophei A. distichus A. cybotes Resource A. etheridgei6 Partitioning
  7. 7. Ecological NicheRealized Fundamental Niche Niche 7
  8. 8. EXPERIMENT High tide Chthamalus Balanus Chthamalus realized niche Balanus realized nicheOcean Low tide 8
  9. 9. RESULTS High tide Chthamalus fundamental nicheOcean Low tide 9
  10. 10. Predation &Herbivory +/- interaction Feeding adaptations of predators Defensive adaptations of prey 10
  11. 11. Cryptic Coloration (Camouflage) 11
  12. 12. 12
  13. 13. Which is Which? 13
  14. 14. 14
  15. 15. 15
  16. 16. 16
  17. 17. 17
  18. 18. 18
  19. 19. 19
  20. 20. Aposematic (Warning) Coloration 20
  21. 21. 21
  22. 22. 22
  23. 23. 23
  24. 24. 24
  25. 25. 25
  26. 26. 26
  27. 27. 27
  28. 28. 28
  29. 29. 29
  30. 30. 30
  31. 31. 31
  32. 32. Aposematic or Cryptic Coloration? 32
  33. 33. MimicryBatesian Mullerian 33
  34. 34. Batesian MimicrySyrphid fly34 Honey bee
  35. 35. 35
  36. 36. 36
  37. 37. 37
  38. 38. 38
  39. 39. 39
  40. 40. Mullerian MimicryViceroy 40
  41. 41. Monarch 41
  42. 42. 42 42
  43. 43. Symbiosis Mutualism Commensalism Parasitism 43
  44. 44. Parasitism Parasite-host interaction (+/-) Ectoparasite Endoparasite 44
  45. 45. EctoparasiteHuman Head Louse 45
  46. 46. Tick 46
  47. 47. EctoparasiteTapeworm scolex 47
  48. 48. Mutualism +/+ interaction Obligate Facultative 48
  49. 49. Ants & Acacia tree 49
  50. 50. 50
  51. 51. 51
  52. 52. Ants & Aphids 52
  53. 53. 53
  54. 54. Commensalism +/0 interaction 54
  55. 55. 55
  56. 56. Species DiversitySpecies Relativerichness abundance 56
  57. 57. A B C D Community 1 Community 2A: 25% B: 25% C: 25% D: 25% A: 80% B: 5% C: 5% D: 10% Two communities can have the same species richness, but have a different relative abundance 57
  58. 58. RESULTS Microbial Species 3.6 RichnessShannon diversity (H) 3.4 3.2 3.0 2.8 2.6 2.4 Molecular evidence 2.2 3 4 5 6 7 8 9 Soil pH 58
  59. 59. Food Quaternary consumersChains Carnivore Carnivore Tertiary consumers Carnivore Carnivore Secondary consumers Carnivore Carnivore Primary consumers Herbivore Zooplankton Primary producers Plant Phytoplankton Terrestrial Marine 59
  60. 60. Humans Food WebBaleen Smaller Spermwhales toothed whales whalesCrab-eater Leopard Elephant seals seals seals Birds Fishes Squids Carnivorous planktonEuphausids Copepods (krill) Phyto- plankton 60
  61. 61. Sea nettle Juvenile striped bass Fish larvaeFish eggs Zooplankton 61
  62. 62. Limits on Food Chain Length Most are 3-4 links Energetic Hypothesis Dynamic Stability Hypothesis 62
  63. 63. Dominant Species Are either the most abundant or… have the highest biomass How? 63
  64. 64. Invasive Species 64
  65. 65. Purple Loosestrife 65
  66. 66. Keystone Species 66
  67. 67. Is Pisasterochraceus a keystone predator? 67
  68. 68. RESULTSNumber of species 20 present 15 With Pisaster (control) 10 5 Without Pisaster (experimental) 0 1963 ’64 ’65 ’66 ’67 ’68 ’69 ’70 ’71 ’72 ’73 Year 68
  69. 69. 100(% max. count) Otter number 80 60 40 20 0 (a) Sea otter abundance 400Grams per 0.25 m2 300 200 100 0 (b) Sea urchin biomass 10Number per 8 0.25 m2 6 4 2 0 1972 1985 1989 1993 1997 Year (c) Total kelp density Food chain 69
  70. 70. Credits by Rob Swatski, 2010 Visit my website for more Biology study resources! http://robswatskibiology.wetpaint.com http://www.flickr.com/photos/rswatskiPlease send your comments and feedback to: rjswatsk@hacc.eduImages used in this work bear a This work bears an Creative Commons license and Attribution-Noncommercial are attributed to their original Share Alike Creative authors. Commons license. 70

×