Successfully reported this slideshow.

World Explorer (JCDL 2007 Best Paper)

2

Share

Loading in …3
×
1 of 23
1 of 23

World Explorer (JCDL 2007 Best Paper)

2

Share

Download to read offline

Slides from my presentation at JCDL 2007.

The paper was titled "World Explorer: Visualizing Aggregate Data from Unstructured Text in Geo-Referenced Collections" and won the Vannevar Bush Best Paper award. You can read the full paper at http://www.rahulnair.net/files/JCDL07-ahern-WorldExplorer.pdf and also see a demo at http://tagmaps.research.yahoo.com/worldexplorer.php

Slides from my presentation at JCDL 2007.

The paper was titled "World Explorer: Visualizing Aggregate Data from Unstructured Text in Geo-Referenced Collections" and won the Vannevar Bush Best Paper award. You can read the full paper at http://www.rahulnair.net/files/JCDL07-ahern-WorldExplorer.pdf and also see a demo at http://tagmaps.research.yahoo.com/worldexplorer.php

More Related Content

Related Books

Free with a 14 day trial from Scribd

See all

Related Audiobooks

Free with a 14 day trial from Scribd

See all

World Explorer (JCDL 2007 Best Paper)

  1. 1. World Explorer: Visualizing Aggregate Data from Unstructured Text in Geo-Referenced Collections Shane Ahern, Mor Naaman, Rahul Nair* & Jeannie Yang Yahoo! Research Berkeley
  2. 2. Attraction Map of Paris <ul><ul><li>Stanley Milgram, 1976. </li></ul></ul><ul><ul><li>Psychological Maps of Paris </li></ul></ul>
  3. 3. Attraction Map of Paris <ul><ul><li>Y!RB, 2007. </li></ul></ul>
  4. 4. Flickr “geotagged” <ul><ul><li>20+ million images </li></ul></ul>Can we do better?
  5. 5. Location-driven Modeling <ul><li>Derive meaningful data about map regions </li></ul><ul><li>E.g., representative tags, photos </li></ul>
  6. 6. Data Description
  7. 7. Issues <ul><li>Sparse data set </li></ul><ul><li>Photographer bias </li></ul><ul><ul><li>In location </li></ul></ul><ul><ul><li>In tags </li></ul></ul><ul><li>Incorrect data </li></ul>
  8. 8. Heuristics <ul><li>Number of photographs denotes the “importance” of a location </li></ul><ul><li>Users will use a common subset of tags to describe objects/locations </li></ul><ul><li>Concentrated tag usage indicates descriptiveness </li></ul>
  9. 9. Algorithm <ul><li>Clustering: k-Means, get set of k clusters </li></ul><ul><li>“ Document” C is bag of all tags in cluster </li></ul><ul><li>For each tag in C calculate: </li></ul><ul><ul><li>TF = |P(C,t)| </li></ul></ul><ul><ul><li>IDF = |P(R)| / |P(R, t)| </li></ul></ul><ul><ul><li>UF = |U(C,t)|/|U(C)| </li></ul></ul>
  10. 10. Scoring <ul><li>Score (t) = TF * IDF * UF </li></ul><ul><li>Threshold values </li></ul><ul><ul><li>30+ photographs </li></ul></ul><ul><ul><li>Minimum 3 users </li></ul></ul><ul><ul><li>Score > 1 </li></ul></ul><ul><li>Final dataset: (tag, score, latitude, longitude) </li></ul>
  11. 11. DEMO
  12. 12. Precomputation <ul><li>Divide the world into equal sized non-overlapping tiles </li></ul><ul><li>Compute and store the tags for each tile </li></ul><ul><li>Repeat for different zoom </li></ul><ul><li>levels </li></ul>
  13. 13. Retrieval <ul><li>Find the tile level closest in size to the request area </li></ul><ul><li>Select the tiles that fully cover the request area </li></ul><ul><li>Return the tags that fall within the request area </li></ul>
  14. 14. User Study <ul><li>10 subjects </li></ul><ul><li>6 female, 4 male </li></ul><ul><li>Ages 20-60 </li></ul><ul><li>Varying technical knowledge </li></ul><ul><li>No geotagged photos of their own </li></ul>
  15. 15. Experiment tasks <ul><li>Vacation recap </li></ul><ul><li>San Francisco tour </li></ul><ul><li>Explore a new city </li></ul>
  16. 16. Recall <ul><li>Reminded the subject about locations </li></ul><ul><li>“It brings out memories” </li></ul><ul><li>“Oh my God! This place has the best restaurants” </li></ul><ul><li>“We wanted to see the Polynesian Cultural Center&quot; </li></ul>
  17. 17. Discovery <ul><li>Participants discovered previously unknown locations and events </li></ul><ul><ul><li>“I’ve never heard of this festival” </li></ul></ul><ul><ul><li>“There is car racing which I'd probably go see” </li></ul></ul>
  18. 18. Needle & Haystack <ul><li>Excellent visualization of the Haystack </li></ul><ul><li>Hard to find specific information </li></ul><ul><ul><li>“Where was Culver City again?” </li></ul></ul><ul><li>No way to search </li></ul><ul><ul><li>“I guess what I’m looking for are bull fighting pictures” </li></ul></ul>
  19. 19. Other Responses <ul><li>Gets the “vibe” of a place </li></ul><ul><li>Share with other people </li></ul><ul><li>Tags did not always match the mental model of a location </li></ul><ul><li>Wanted more tags </li></ul><ul><li>Want more info about tags </li></ul>
  20. 20. Conclusions <ul><li>Extracted meaningful aggregate information from georeferenced data </li></ul><ul><li>Allows users to explore locations in a new way </li></ul><ul><li>Users like using the overview but also want the ability to search </li></ul>
  21. 21. Future work <ul><li>Adding search capability </li></ul><ul><li>Show photos in places with no tags </li></ul><ul><li>Differentiate locations and events </li></ul><ul><li>Apply to other types of georeferenced data </li></ul>
  22. 22. tagmaps.research.yahoo.com <ul><li>World Explorer </li></ul><ul><li>Data API </li></ul><ul><li>Visualization toolkit </li></ul><ul><li>Trip Explorer </li></ul><ul><li>Night Explorer </li></ul>
  23. 23. Questions? Rahul Nair [email_address] http://tagmaps.research.yahoo.com

Editor's Notes

  • Hello Work done at YRB with my colleagues
  • ×