Non-Food Options at the Farm Level Agricultural Bioenergy Options in ENFA *  Chrystalyn Ivie Ramos, Uwe Schneider +  Edwar...
Table 1: Food/Non-Food Production Lines in ENFA   Biogas Paper, Bioelectricity Bioheat, Biofuels (Methanol, FT-diesel, Hyd...
Non-food Product Applications Selection <ul><li>Selection of applications are based on the following parameters: </li></ul...
Miscanthus & switchgrass chains <ul><ul><ul><li>C4 grasses </li></ul></ul></ul><ul><ul><ul><li>high light, water, and  nit...
Table 2:  Miscanthus & switchgrass   applications selected Bioelectricity, Bioheat, Biofuels, Biomaterials Non-food produc...
<ul><li>Total costs of production were calculated </li></ul><ul><li>Discounted cash flow methodology </li></ul><ul><li>Con...
Environmental performance calculations <ul><li>Based on GHG emissions during the production and transportation stages </li...
Miscanthus and switchgrass production  –  an overview Table 3: Number of application of production stages over the m iscan...
Inputs (example for miscanthus) <ul><li>20,000 rhizomes/ha  0.16 Euro/rhizome </li></ul><ul><li>Fertilization (example for...
Sample costs <ul><ul><ul><li>Sources:  Huisman, 1997; Lazarus & Selly, 2003; EUROSTAT, 2006 </li></ul></ul></ul>Table 4: F...
<ul><li>Key variables/uncertainties for economic performance of miscanthus production: </li></ul><ul><ul><li>On-field tran...
Yields <ul><ul><ul><li>MiscanMod  </li></ul></ul></ul><ul><ul><ul><li>crop growth model </li></ul></ul></ul><ul><ul><ul><l...
<ul><li>Storing </li></ul><ul><ul><li>Storage options are available (costs < 10 Euro/ton) for existing farm and roofed tim...
<ul><ul><ul><li>Sources: NEA, 2004;  </li></ul></ul></ul><ul><ul><ul><li>IFEU, 2005; Hamelinck, 2004 </li></ul></ul></ul>T...
<ul><li>Key uncertainties are the moisture content and the source and price of energy </li></ul><ul><li>Only  attractive i...
Figure 3: Total production, storage & transportation costs of miscanthus and switchgrass yields Yield (ton/ha/yr) 0 20 40 ...
Figure 4: Total miscanthus production costs - EU25 * <ul><ul><ul><li>Yields from MiscanMod (Clifton-Brown et al., 2000) </...
Results: Economic performance evaluation <ul><li>Sources: </li></ul><ul><ul><li>Energy: OECD/IEA (2006) </li></ul></ul><ul...
Figure 5: Chemical production costs (Biomaterials) Production costs conventional processes (Euro/ton) Ethylene PET PTT 724...
Figure 6: Biofuel production costs 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 now future now future now future now future now...
Results: Environmental performance evaluation P = production, PL = Poland - Lubelski, HU = Hungary - Del-Dunantal, UK = Un...
Agricultural Bioenergy Options in ENFA <ul><li>Summary of the different food and non-food bioenergy options: </li></ul><ul...
Figure 8: Average production yields of different bioenergy options
Figure 9: Production costs of different bioenergy options
Figure 10: Labor intensities of different bioenergy options
Figure 11: Amount of fertilizer use by different bioenergy options
Figure 12: Amount of fuel use by different bioenergy options
Figure 13: Input data parameters for different bioenergy options
Upcoming SlideShare
Loading in …5
×

Agricultural Bioenergy Non Food Options_Brussels2008

633 views

Published on

presentation at the European Non-Food Agriculture Project Final Meeting in Brussels, 2008

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
633
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • landless and pastoral production system are also possible, with various mixes of feed inputs. Within each system there are also differences in efficiency possible, due to differences in the efficiency and state of technology applied. The demand for pastureland is compared with the present pasture land use to calculate a shortage or surplus of pasture land. The demand for feed is added up with the demand for food crops and is translated into land use based on yields and suitable areas for crop production based on the level of agricultural technology and management applied. The result of this calculations is a surplus or shortage of cropland. In case of surplus cropland, a bioenergy production potential from bioenergy crops is estimated based the yields for woody bioenergy crops (such as poplar, eucalyptus, willow). The bioenergy production from surplus forest growth is estimated by comparison of the supply and demand for wood. The demand for wood is subdevided into fuelwood and industrial roundwood. The supply of wood comes from natural forest growth and plantations. For both the supply and demand various scenarios are included and a surplus of shortage of wood can be calculated. In addition, the harvesting and processing of food in each region generates harvesting and processing residues which can also be used as a source of bioenergy. Various studies indicate however, that the potentials from specialised bioenergy crops on surplus agricultural land has the largest potential. Therefor the focus in this study is on agricultural land use.
  • Many combinations of scenarios for various factors included in this study are possible. This table shows results for 4 scenarios in which the projected demand for food is met globally. Regions with a food deficit are compensated by means of imports from other regions. In all four scenarios a high fce is used (HERDEFINIEREN), a mixed or landless animal production system, a high level of technology for crop production, and rain-fed or irrigated agriculture. The data show that the largest potentials for bioenergy crops can be found in the developing regions, particularly sub-Saharan Africa and Latin America. Of the transition regions the CIS &amp; Baltic States has a considerable potential, even in least efficient of the four scenarios. The data also indicate the impact of irrigation, since the global bioenergy production potential increases from 215 to 455 EJ and the impact of a landless industrialised production system instead of a mixed production system (455 tp 1101 EJ).
  • Agricultural Bioenergy Non Food Options_Brussels2008

    1. 1. Non-Food Options at the Farm Level Agricultural Bioenergy Options in ENFA * Chrystalyn Ivie Ramos, Uwe Schneider + Edward Smeets, Iris Lewandowski, André Faaij * Research Unit Sustainability and Global Change, Hamburg University + Department of Science, Technology and Society, Utrecht University Final Meeting ENFA, 23-24 April 2008, Brussels, Belgium Copernicus Institute Sustainable Development and Innovation
    2. 2. Table 1: Food/Non-Food Production Lines in ENFA Biogas Paper, Bioelectricity Bioheat, Biofuels (Methanol, FT-diesel, Hydrogen) Biodiesel Bioethanol Biomaterials Bioenergy generation Hot water energy Biofuels, Bioelectricity, Bioheat, Biomaterials Non-food product applications UHH, UHOH, INRA Methane Manure treatment UHH Livestock options OCE, ECBREC, JR Pulp, Timber Forest Management UHOH, ECBREC, INRA, JR Oilseeds Rape, Sunflower UHOH, UUTR, INRA, JR Oilseeds Maize, Sugar beet, Potatoes A&F Fiber and shive products Hemp, Flax, Kenaf SLU, ECBREC, INRA, AUA, JR Pellets, Chips Willow, Poplar, Eucalyptus, Giant reed, Cardoon SLU Pellets and briquettes Red canary grass UUTR, A&F, INRA, IGER, AUA, TCD, JR Pellets, Bales Miscanthus, Switchgrass Contributor(s) Non-food product options Land use options
    3. 3. Non-food Product Applications Selection <ul><li>Selection of applications are based on the following parameters: </li></ul><ul><li>market size </li></ul><ul><li>economic performance </li></ul><ul><li>technical feasibility </li></ul><ul><li>environmental performance </li></ul>
    4. 4. Miscanthus & switchgrass chains <ul><ul><ul><li>C4 grasses </li></ul></ul></ul><ul><ul><ul><li>high light, water, and nitrogen use efficiency </li></ul></ul></ul><ul><ul><ul><li>high yield potential </li></ul></ul></ul><ul><ul><ul><li>miscanthus field </li></ul></ul></ul><ul><ul><ul><li>miscanthus harvesting </li></ul></ul></ul>
    5. 5. Table 2: Miscanthus & switchgrass applications selected Bioelectricity, Bioheat, Biofuels, Biomaterials Non-food product applications UUTR, A&F, INRA, IGER, AUA, TCD, JR Pellets, Bales Miscanthus, Switchgrass Contributor(s) Non-food product options Land use options Poly Trimethylene Tetraphalate Fischer-Tropsch diesel Gasification and co-combustion with coal Medium Density Fiberboard Small scale heating Poly Lactic Acid Hydrogen Indirect co-combustion with coal Ethylene Ethanol Integrated gasification and combined cycle Dimethyl Ether Methanol Combustion combined heat and power Biomaterials Biofuels Bioenergy
    6. 6. <ul><li>Total costs of production were calculated </li></ul><ul><li>Discounted cash flow methodology </li></ul><ul><li>Considered the supply chain in the calculations </li></ul><ul><ul><li>includes growing, harvesting, storing, compacting and transporting </li></ul></ul><ul><li>Regional variation were accounted </li></ul><ul><ul><li>in terms of yield, transportation distance, input costs (labor, fuel, agrochemicals, etc.) </li></ul></ul><ul><li>Calculations done for the base case and 2030 </li></ul>Economic performance calculations
    7. 7. Environmental performance calculations <ul><li>Based on GHG emissions during the production and transportation stages </li></ul><ul><ul><li>Direct emissions </li></ul></ul><ul><ul><ul><li>Emissions from fuel use in agricultural machineries or transportation equipment </li></ul></ul></ul><ul><ul><ul><li>Nitrous oxide emissions from fertilizer use </li></ul></ul></ul><ul><ul><li>Indirect emissions </li></ul></ul><ul><ul><ul><li>Emissions generated from the bioenergy or biomaterial production during the production and transportation stages </li></ul></ul></ul><ul><li>Spreadsheet modeling </li></ul>
    8. 8. Miscanthus and switchgrass production – an overview Table 3: Number of application of production stages over the m iscanthus and switchgrass lifetimes* * Assumed to be applicable in all EU regions
    9. 9. Inputs (example for miscanthus) <ul><li>20,000 rhizomes/ha 0.16 Euro/rhizome </li></ul><ul><li>Fertilization (example for Germany): </li></ul><ul><ul><li>N 24 kg/ha/y (incl. atm. deposition) </li></ul></ul><ul><ul><li>P 10 kg/ha/y </li></ul></ul><ul><ul><li>K 91 kg/ha/y </li></ul></ul><ul><ul><li>Ca 14 kg/ha/y </li></ul></ul><ul><ul><li>based on 0.27% N, 0.07% P, 0.65% K, and 0.10% Ca of odt and a yield of 14 ton/ha/y </li></ul></ul>
    10. 10. Sample costs <ul><ul><ul><li>Sources: Huisman, 1997; Lazarus & Selly, 2003; EUROSTAT, 2006 </li></ul></ul></ul>Table 4: Farm machinery costs for a self propelled big baler harvester
    11. 11. <ul><li>Key variables/uncertainties for economic performance of miscanthus production: </li></ul><ul><ul><li>On-field transportation costs </li></ul></ul><ul><ul><li>Farm size </li></ul></ul><ul><ul><ul><li>Use of scale factor (SF) to account correlation with machinery costs </li></ul></ul></ul><ul><ul><li>Yield harvest cost factor (YF): </li></ul></ul><ul><ul><ul><li>Used to represent correlation between yield and harvest costs </li></ul></ul></ul>SF = 0.82 + 8.86 (1/s) where s = farm size (ha), whereby s ≥ 20 ha YF = 4.33 Y -0.589 where Y = yield (ton/ha) http://blog.futurelab.net http://www.pictokon.net
    12. 12. Yields <ul><ul><ul><li>MiscanMod </li></ul></ul></ul><ul><ul><ul><li>crop growth model </li></ul></ul></ul><ul><ul><ul><li>Average yield EU25: Base: 13 tons/ha/yr 2030: 16 tons/ha/yr </li></ul></ul></ul><ul><ul><ul><li>Source: Stampfl et al., 2006 </li></ul></ul></ul>Figure 1: Field yields of miscanthus in the EU region 0- 5 6 - 10 11 - 15 16 - 20 21 - 25 26 - 30 31 - 35 36 - 40 41 - 45 tons/ha/yr
    13. 13. <ul><li>Storing </li></ul><ul><ul><li>Storage options are available (costs < 10 Euro/ton) for existing farm and roofed timber buildings </li></ul></ul><ul><ul><li>Risk of self heating and dry matter loss during storage </li></ul></ul><ul><li>Pelletizing </li></ul><ul><ul><li>On-field and on-farm pelleting is expensive </li></ul></ul><ul><ul><ul><li>Large scale effect: </li></ul></ul></ul><ul><ul><ul><li>3 t/h ≡ 55 Euro/ton (Austria) </li></ul></ul></ul><ul><ul><ul><li>10 t/h ≡ 30 Euro/ton (Sweden) </li></ul></ul></ul><ul><ul><li>Pelletizing to reduce transportation </li></ul></ul><ul><ul><li>costs is unprofitable! </li></ul></ul>http://www.peer-span.ch
    14. 14. <ul><ul><ul><li>Sources: NEA, 2004; </li></ul></ul></ul><ul><ul><ul><li>IFEU, 2005; Hamelinck, 2004 </li></ul></ul></ul>Table 5: Transportation costs http://www.walesbiomass.org
    15. 15. <ul><li>Key uncertainties are the moisture content and the source and price of energy </li></ul><ul><li>Only attractive in the case of very long distance transport (>700 km) in the case of low energy costs (e.g. in combination with a CHP plant) </li></ul>PL = Poland; HU = Hungary; UK = United Kingdom; IT = Italy; LI = Lithuania Figure 2: Pelletizing costs 0 5 10 15 20 25 30 35 40 PL - 2004 PL - 2030 HU - 2004 HU - 2030 UK - 2004 UK - 2030 IT - 2004 IT - 2030 LI - 2004 LI - 2030 Euro/ton Energy Labor Capital 1.7 1.4 0.8 1.9 0.6 1.1 Euro/GJ 2.2 0.3 0
    16. 16. Figure 3: Total production, storage & transportation costs of miscanthus and switchgrass yields Yield (ton/ha/yr) 0 20 40 60 80 100 SVE LAT LIT POL HUN SVA CZE MAL EST BEL FRA AUS ITA GER LUX UKI SPA POR GRE SWE IRE NET FIN DEN Euro/ton Transportation Storage Production 20 15 10 5 0 25 0 20 40 60 80 100 120 SVE LAT LIT POL HUN SVA CZE MAL EST BEL FRA AUS ITA GER LUX UKI SPA POR GRE IRE SWE NET FIN DEN Euro/ton Transportation Storage Production 20 10 5 0 25 15 0
    17. 17. Figure 4: Total miscanthus production costs - EU25 * <ul><ul><ul><li>Yields from MiscanMod (Clifton-Brown et al., 2000) </li></ul></ul></ul><ul><ul><ul><li>Including labor costs/margins </li></ul></ul></ul><ul><ul><ul><li>* From the field to the farm gate </li></ul></ul></ul>5 10 15 20 25 0 Yield (ton /ha/y)
    18. 18. Results: Economic performance evaluation <ul><li>Sources: </li></ul><ul><ul><li>Energy: OECD/IEA (2006) </li></ul></ul><ul><ul><li>Fuels: Well-to-Wheels study ( JRC-IES, EUCAR, Concawe, 2006) </li></ul></ul><ul><ul><li>Materials: BREW project (Patel et al., 2006) </li></ul></ul><ul><li>Assumptions: </li></ul><ul><ul><li>Aggregated data </li></ul></ul><ul><ul><li>Cradle-to-grave basis </li></ul></ul><ul><ul><li>No regional variation (same conversion technologies) </li></ul></ul><ul><li>Key variables: </li></ul><ul><ul><li>Plant scale, fuel conversion efficiency, interest rate, oil price (reference system) </li></ul></ul>
    19. 19. Figure 5: Chemical production costs (Biomaterials) Production costs conventional processes (Euro/ton) Ethylene PET PTT 724 1200 1177 0 500 1000 1500 2000 2500 BELG DENM FINL FRAN GERM IREL ITAL LITH POLA PORT SLVN SWED UNIK Euro/ton Ethylene now Ethylene future PLA now PLA future PTT now PTT future
    20. 20. Figure 6: Biofuel production costs 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 now future now future now future now future now future now future CI CI CI, hybrid CI, hybrid SI SI SI, hybrid SI, hybrid CI CI CI, hybrid CI, hybrid FT diesel Ethanol DME Euro/km Estonia Germany Italy Latvia Lithuania Slovenia United Kingdom 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 now future now future now future now future now future now future now future SI SI SI, hyrbrid SI, hybrid CI CI CI, hyrbrid CI, hybrid FC, hybrid FC, hybrid FC FC FC, hybrid FC, hybrid Gasoline Diesel Methanol Hydrogen Euro/km Estonia Germany Italy Latvia Lithuania Slovenia United Kingdom
    21. 21. Results: Environmental performance evaluation P = production, PL = Poland - Lubelski, HU = Hungary - Del-Dunantal, UK = United Kingdom - Devon, IT = Italy – Lombardia, LI = Lithuania, M = miscanthus, S = switchgrass, B = baled, C = chopped. Figure 7: GHG emissions from miscanthus production 0 10 20 30 40 50 60 70 80 90 100 PL- M-B- 2004 PL- M-B- 2030 PL- M-C- 2004 PL- M-C- 2030 HU- M-B- 2004 HU- M-B- 2030 HU- M-C- 2004 HU- M-C- 2030 UK- M-B- 2004 UK- M-B- 2030 UK- M-C- 2004 UK- M-C- 2030 IT- M-B- 2004 IT- M-B- 2030 IT- M-C- 2004 IT- M-C- 2030 LI- M-B- 2004 LI- M-B- 2030 LI- M-C- 2004 LI- M-C- 2030 Transport Unloading Storage P - Machines production P - Machines use P - N2O N fertilizer P - Fertilizers and agrochem prod. P - Planting material 3.9 2.8 1.7 5.0 0 2.2 kg CO2 eq/ GJ 5.6 4.4 3.3 1.1 0.6 kg CO 2 eq/ton
    22. 22. Agricultural Bioenergy Options in ENFA <ul><li>Summary of the different food and non-food bioenergy options: </li></ul><ul><ul><li>Yields </li></ul></ul><ul><ul><li>Production costs </li></ul></ul><ul><ul><li>Labor intensity </li></ul></ul><ul><ul><li>Fertilizer use </li></ul></ul><ul><ul><li>Energy use </li></ul></ul>http://www.eubia.org/
    23. 23. Figure 8: Average production yields of different bioenergy options
    24. 24. Figure 9: Production costs of different bioenergy options
    25. 25. Figure 10: Labor intensities of different bioenergy options
    26. 26. Figure 11: Amount of fertilizer use by different bioenergy options
    27. 27. Figure 12: Amount of fuel use by different bioenergy options
    28. 28. Figure 13: Input data parameters for different bioenergy options

    ×