SlideShare a Scribd company logo
Rinke HoekstraUse of OWL in the Legal DomainStatement of InterestOWLED 2008 DC, Gaithersburg
OverviewContextTexts and RepresentationRepresentation and ReasoningConclusionsOWLED 2008 DC, Gaithersburg
ContextLegal Knowledge RepresentationFormal models of Legal TheoryCase based reasoning, Argument theory, Deontic logics, Dispute resolutionFormal models of Legal ContentAssessment, Planning, Ontology, Harmonisation, SimulationAnnotationVersioning, authority, accessibility, cross-referencingOWLED 2008 DC, Gaithersburg
Text and Representation (1)Legal textsOfficial statusClosely interlinkedDifferent authoritiesIntricate versioningDecisions are based on authority of text ➙ TrustOWLED 2008 DC, Gaithersburg
Text and Representation (2)A KR:should be traceable to source,should mimic thestructural, anddynamic properties of texts, and is secondary, it is an annotationDefinitions are scoped(Parts of) a particular textTemporal validityJurisdictionOWLED 2008 DC, Gaithersburg
Law and the Semantic WebStrong analogyDifferent usersDifferent usesNo single information providerTwo languagesMetaLex/CEN XMLStructure, references, versions of legal texts Legal Knowledge Interchange Format (LKIF)ESTRELLA ProjectOWLED 2008 DC, Gaithersburg
Legal Layer CakeOWLED 2008 DC, Gaithersburg
Representation and Reasoning (1)Lessons learned LKIF-Core OntologyExpressiveness Significant impact on reasoner performanceBut still too restricted to represent common patterns (e.g. transactions, structured objects)… resort to DL-Safe rules? No!Looking forward to: Description graphsOWLED 2008 DC, Gaithersburg
Representation and Reasoning (2)Hybrid ApproachesNot avoidableInteraction with legacy systemsExtensionsLooking forward to: DLP/Prime/RIFConditional (or partial) ClassificationCompensation of land useLooking forward to: ProntoOWLED 2008 DC, Gaithersburg
Representation and Reasoning (3)Extension mechanismsAdding non-standard semanticsStratified meta-levelsConnection to text sources (as RDF)Looking forward to: advanced annotations AccountabilityLooking forward to: explanationOWLED 2008 DC, Gaithersburg
ConclusionsWe want it all:ExpressivityPerformanceExplanationAnnotationExtensionsVersioningInteraction with RulesOWLED 2008 DC, Gaithersburg
LinksLeibniz Center for Lawhttp://www.leibnizcenter.orgMetaLex/CENhttp://www.metalex.euLKIF Corehttp://www.estrellaproject.org/lkif-coreOWLED 2008 DC, Gaithersburg

More Related Content

More from Rinke Hoekstra

Knowledge Representation on the Web
Knowledge Representation on the WebKnowledge Representation on the Web
Knowledge Representation on the Web
Rinke Hoekstra
 
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Rinke Hoekstra
 
Prov-O-Viz: Interactive Provenance Visualization
Prov-O-Viz: Interactive Provenance VisualizationProv-O-Viz: Interactive Provenance Visualization
Prov-O-Viz: Interactive Provenance Visualization
Rinke Hoekstra
 
Linkitup: Link Discovery for Research Data
Linkitup: Link Discovery for Research DataLinkitup: Link Discovery for Research Data
Linkitup: Link Discovery for Research Data
Rinke Hoekstra
 
A Network Analysis of Dutch Regulations - Using the Metalex Document Server
A Network Analysis of Dutch Regulations - Using the Metalex Document ServerA Network Analysis of Dutch Regulations - Using the Metalex Document Server
A Network Analysis of Dutch Regulations - Using the Metalex Document Server
Rinke Hoekstra
 
Linked (Open) Data - But what does it buy me?
Linked (Open) Data - But what does it buy me?Linked (Open) Data - But what does it buy me?
Linked (Open) Data - But what does it buy me?
Rinke Hoekstra
 
Linked Science - Building a Web of Research Data
Linked Science - Building a Web of Research DataLinked Science - Building a Web of Research Data
Linked Science - Building a Web of Research Data
Rinke Hoekstra
 
COMMIT/VIVO
COMMIT/VIVOCOMMIT/VIVO
COMMIT/VIVO
Rinke Hoekstra
 
Semantic Representations for Research
Semantic Representations for ResearchSemantic Representations for Research
Semantic Representations for Research
Rinke Hoekstra
 
A Slightly Different Web of Data
A Slightly Different Web of DataA Slightly Different Web of Data
A Slightly Different Web of Data
Rinke Hoekstra
 
The Knowledge Reengineering Bottleneck
The Knowledge Reengineering BottleneckThe Knowledge Reengineering Bottleneck
The Knowledge Reengineering Bottleneck
Rinke Hoekstra
 
Linked Census Data
Linked Census DataLinked Census Data
Linked Census Data
Rinke Hoekstra
 
Concept- en Definitie Extractie
Concept- en Definitie ExtractieConcept- en Definitie Extractie
Concept- en Definitie Extractie
Rinke Hoekstra
 
SIKS 2011 Semantic Web Languages
SIKS 2011 Semantic Web LanguagesSIKS 2011 Semantic Web Languages
SIKS 2011 Semantic Web Languages
Rinke Hoekstra
 
The MetaLex Document Server - Legal Documents as Versioned Linked Data
The MetaLex Document Server - Legal Documents as Versioned Linked DataThe MetaLex Document Server - Legal Documents as Versioned Linked Data
The MetaLex Document Server - Legal Documents as Versioned Linked Data
Rinke Hoekstra
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
Rinke Hoekstra
 
History of Knowledge Representation (SIKS Course 2010)
History of Knowledge Representation (SIKS Course 2010)History of Knowledge Representation (SIKS Course 2010)
History of Knowledge Representation (SIKS Course 2010)
Rinke Hoekstra
 
Making Sense of Design Patterns
Making Sense of Design PatternsMaking Sense of Design Patterns
Making Sense of Design Patterns
Rinke Hoekstra
 
Publicatie van Linked Open Overheids Data
Publicatie van Linked Open Overheids DataPublicatie van Linked Open Overheids Data
Publicatie van Linked Open Overheids Data
Rinke Hoekstra
 
ODaF 2010 Linked Data in the Netherlands
ODaF 2010 Linked Data in the NetherlandsODaF 2010 Linked Data in the Netherlands
ODaF 2010 Linked Data in the Netherlands
Rinke Hoekstra
 

More from Rinke Hoekstra (20)

Knowledge Representation on the Web
Knowledge Representation on the WebKnowledge Representation on the Web
Knowledge Representation on the Web
 
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
 
Prov-O-Viz: Interactive Provenance Visualization
Prov-O-Viz: Interactive Provenance VisualizationProv-O-Viz: Interactive Provenance Visualization
Prov-O-Viz: Interactive Provenance Visualization
 
Linkitup: Link Discovery for Research Data
Linkitup: Link Discovery for Research DataLinkitup: Link Discovery for Research Data
Linkitup: Link Discovery for Research Data
 
A Network Analysis of Dutch Regulations - Using the Metalex Document Server
A Network Analysis of Dutch Regulations - Using the Metalex Document ServerA Network Analysis of Dutch Regulations - Using the Metalex Document Server
A Network Analysis of Dutch Regulations - Using the Metalex Document Server
 
Linked (Open) Data - But what does it buy me?
Linked (Open) Data - But what does it buy me?Linked (Open) Data - But what does it buy me?
Linked (Open) Data - But what does it buy me?
 
Linked Science - Building a Web of Research Data
Linked Science - Building a Web of Research DataLinked Science - Building a Web of Research Data
Linked Science - Building a Web of Research Data
 
COMMIT/VIVO
COMMIT/VIVOCOMMIT/VIVO
COMMIT/VIVO
 
Semantic Representations for Research
Semantic Representations for ResearchSemantic Representations for Research
Semantic Representations for Research
 
A Slightly Different Web of Data
A Slightly Different Web of DataA Slightly Different Web of Data
A Slightly Different Web of Data
 
The Knowledge Reengineering Bottleneck
The Knowledge Reengineering BottleneckThe Knowledge Reengineering Bottleneck
The Knowledge Reengineering Bottleneck
 
Linked Census Data
Linked Census DataLinked Census Data
Linked Census Data
 
Concept- en Definitie Extractie
Concept- en Definitie ExtractieConcept- en Definitie Extractie
Concept- en Definitie Extractie
 
SIKS 2011 Semantic Web Languages
SIKS 2011 Semantic Web LanguagesSIKS 2011 Semantic Web Languages
SIKS 2011 Semantic Web Languages
 
The MetaLex Document Server - Legal Documents as Versioned Linked Data
The MetaLex Document Server - Legal Documents as Versioned Linked DataThe MetaLex Document Server - Legal Documents as Versioned Linked Data
The MetaLex Document Server - Legal Documents as Versioned Linked Data
 
Querying the Web of Data
Querying the Web of DataQuerying the Web of Data
Querying the Web of Data
 
History of Knowledge Representation (SIKS Course 2010)
History of Knowledge Representation (SIKS Course 2010)History of Knowledge Representation (SIKS Course 2010)
History of Knowledge Representation (SIKS Course 2010)
 
Making Sense of Design Patterns
Making Sense of Design PatternsMaking Sense of Design Patterns
Making Sense of Design Patterns
 
Publicatie van Linked Open Overheids Data
Publicatie van Linked Open Overheids DataPublicatie van Linked Open Overheids Data
Publicatie van Linked Open Overheids Data
 
ODaF 2010 Linked Data in the Netherlands
ODaF 2010 Linked Data in the NetherlandsODaF 2010 Linked Data in the Netherlands
ODaF 2010 Linked Data in the Netherlands
 

Recently uploaded

BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
SAI KAILASH R
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
DianaGray10
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
DianaGray10
 
Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
SynapseIndia
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Zilliz
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
janagijoythi
 
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
alexjohnson7307
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Nicolás Lopéz
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
Debmalya Biswas
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
shyamraj55
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
Arpan Buwa
 
Finetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and DefendingFinetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and Defending
Priyanka Aash
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
Zilliz
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
FIDO Alliance
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
ssuser1915fe1
 
Redefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI CapabilitiesRedefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI Capabilities
Priyanka Aash
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
Zilliz
 

Recently uploaded (20)

BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and DisadvantagesBLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
BLOCKCHAIN TECHNOLOGY - Advantages and Disadvantages
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
 
Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
 
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
leewayhertz.com-AI agents for healthcare Applications benefits and implementa...
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 
Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)Gen AI: Privacy Risks of Large Language Models (LLMs)
Gen AI: Privacy Risks of Large Language Models (LLMs)
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
 
Finetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and DefendingFinetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and Defending
 
It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...It's your unstructured data: How to get your GenAI app to production (and spe...
It's your unstructured data: How to get your GenAI app to production (and spe...
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
 
Redefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI CapabilitiesRedefining Cybersecurity with AI Capabilities
Redefining Cybersecurity with AI Capabilities
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
 

Use of OWL in the Legal Domain

  • 1. Rinke HoekstraUse of OWL in the Legal DomainStatement of InterestOWLED 2008 DC, Gaithersburg
  • 2. OverviewContextTexts and RepresentationRepresentation and ReasoningConclusionsOWLED 2008 DC, Gaithersburg
  • 3. ContextLegal Knowledge RepresentationFormal models of Legal TheoryCase based reasoning, Argument theory, Deontic logics, Dispute resolutionFormal models of Legal ContentAssessment, Planning, Ontology, Harmonisation, SimulationAnnotationVersioning, authority, accessibility, cross-referencingOWLED 2008 DC, Gaithersburg
  • 4. Text and Representation (1)Legal textsOfficial statusClosely interlinkedDifferent authoritiesIntricate versioningDecisions are based on authority of text ➙ TrustOWLED 2008 DC, Gaithersburg
  • 5. Text and Representation (2)A KR:should be traceable to source,should mimic thestructural, anddynamic properties of texts, and is secondary, it is an annotationDefinitions are scoped(Parts of) a particular textTemporal validityJurisdictionOWLED 2008 DC, Gaithersburg
  • 6. Law and the Semantic WebStrong analogyDifferent usersDifferent usesNo single information providerTwo languagesMetaLex/CEN XMLStructure, references, versions of legal texts Legal Knowledge Interchange Format (LKIF)ESTRELLA ProjectOWLED 2008 DC, Gaithersburg
  • 7. Legal Layer CakeOWLED 2008 DC, Gaithersburg
  • 8. Representation and Reasoning (1)Lessons learned LKIF-Core OntologyExpressiveness Significant impact on reasoner performanceBut still too restricted to represent common patterns (e.g. transactions, structured objects)… resort to DL-Safe rules? No!Looking forward to: Description graphsOWLED 2008 DC, Gaithersburg
  • 9. Representation and Reasoning (2)Hybrid ApproachesNot avoidableInteraction with legacy systemsExtensionsLooking forward to: DLP/Prime/RIFConditional (or partial) ClassificationCompensation of land useLooking forward to: ProntoOWLED 2008 DC, Gaithersburg
  • 10. Representation and Reasoning (3)Extension mechanismsAdding non-standard semanticsStratified meta-levelsConnection to text sources (as RDF)Looking forward to: advanced annotations AccountabilityLooking forward to: explanationOWLED 2008 DC, Gaithersburg
  • 11. ConclusionsWe want it all:ExpressivityPerformanceExplanationAnnotationExtensionsVersioningInteraction with RulesOWLED 2008 DC, Gaithersburg
  • 12. LinksLeibniz Center for Lawhttp://www.leibnizcenter.orgMetaLex/CENhttp://www.metalex.euLKIF Corehttp://www.estrellaproject.org/lkif-coreOWLED 2008 DC, Gaithersburg

Editor's Notes

  1. SWRL requires us to represent information in rules that can be expressed using DL (prevent classification can only be done by expressing class entirely in rules)Abox assertions not necessarily valid model of Tbox,Variables and property reflexivity not very intuitive.
  2. Hybrid approaches are not avoidable in a knowledge based system.