Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
×

# Similar triangles

Similar Triangles - one of the topics in Plane Geometry

See all

### Related Audiobooks

#### Free with a 30 day trial from Scribd

See all
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

### Similar triangles

1. 1. Similar Triangles
2. 2. The AAA Similarity Postulate If three angles of one triangle are congruent to three angle of another triangle, then the two triangles are similar.
3. 3. The AAA Similarity Postulate If β π΄ β β π·, πππβ π΅ β β πΈ, β πΆ β β πΉ. Then βπ΄π΅πΆ~βπ·πΈπΉ.
4. 4. The AA Similarity Theorem If β π΄ β β π·, πππβ π΅ β β πΈ. Then βπ΄π΅πΆ~βπ·πΈπΉ.
5. 5. Example 1 RI II NO, RI =8, RB=3x+4,ON=16, and OB=x+18 Find a. RB b. OB Ans. x=2 RB=10 OB=20
6. 6. The SAS Similarity Theorem If two sides of one triangle are proportional to the corresponding two sides of another triangle and their respective included angles are congruent, then the triangles are similar.
7. 7. The SAS Similarity Theorem If π΄π΅ π·πΈ = π΄πΆ π·πΉ πππ β π΄ β β π·, πβππ βπ΄π΅πΆ~βπ·πΈπΉ
8. 8. Example 2 Are the two triangles similar? Justify your answer.
9. 9. The SSS Similarity Theorem If the sides of one triangle are proportional to the corresponding sides of a second triangle, then the triangles are similar.
10. 10. Similar right triangles The L-L Similarity Theorem If the legs of a right triangle are proportional to the corresponding legs of another right triangle, the right triangles are similar.
11. 11. The L-L Similarity Theorem If β πΆ πππβ πΉ πππ πππβπ‘ ππππππ  πππ π΄πΆ π΅πΆ = π·πΉ πΈπΉ πβππ βπ΄π΅πΆ~βπ·πΈπΉ
12. 12. Similar right triangles The H-L Similarity Theorem If the hypotenuse and a leg of a right triangle are proportional to the corresponding hypotenuse and leg of another right triangle, then the right triangles are similar.
13. 13. The H-L Similarity Theorem If β πΆ πππβ πΉ πππ πππβπ‘ ππππππ  πππ π΄π΅ π·πΈ = π΄πΆ π·πΉ πβππ βπ΄π΅πΆ~βπ·πΈπΉ
14. 14. Example 3 In the figure UA β₯ π΄π, ππΈ β₯ πΈπ, ππ΄ = 24, π΄π = 10, ππΈ = 5π₯ + 2, πππ πΈππ₯ + 3. π·ππ‘ππππππ π₯ π π π‘βππ‘ βππ΄π~βππΈπ.
15. 15. Proportional Segments The Proportional Segments Theorem If a line intersects two sides of a triangle at distinct points and is parallel to the third side, the line divides the two sides in two proportional segments.
16. 16. The Proportional Segments Theorem πππ πΌπ π || BC, then π΅π π΄π = πΆπ π΄π
17. 17. Example 4 In βπππ, AB||QR. If OA=5, PA=2, and BR=10, find PB.
18. 18. Example 5 A flagpole 8m high casts a shadow of 12m, while a nearby building casts a shadow of 60m. How high is a building?
19. 19. Proportional Segments The Bisector of an angle of a triangle divides the opposite side into segments which are proportional to the adjacent sides.
20. 20. Proportional Segments If βπ΄π΅πΆ with AD an angle bisector, then π΄π΅ π΄πΆ = π΅π· πΆπ·
21. 21. Example 6 Find the value of x.