Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

4th RICC workshopのご案内

1,069 views

Published on

第15回さくらの夕べin札幌のLT内容です。ちょっと補っております。

Published in: Technology
  • Be the first to comment

  • Be the first to like this

4th RICC workshopのご案内

  1. 1. 4th RICC workshopの ご案内 An invitation for 4th RICC workshop 第15回さくらの夕べ in 札幌 柏崎 礼生 Hiroki Kashiwazaki
  2. 2. 小 市桂岡町から きました
  3. 3. 4th RICC workshop @Okinawa 2014/3/27(Thu)∼28(Fri)
  4. 4. RICC
  5. 5. 俵屋宗達: 風神雷神図 (1624ころ?) Soutatsu Tawaraya: Fujin Raijin-zu
  6. 6. R 地域間 I インタークラウド C 分科会 C
  7. 7. 雲内放電 Inter Cloud Lightening
  8. 8. RICC 4th RICC workshop 4th RICC workshopの ご案内 @Okinawa 2014/3/27(Thu)∼28(Fri) An invitation for 4th RICC workshop 第15回さくらの夕べ in 札幌 柏崎 礼生 俵屋宗達: 風神雷神図 (1624ころ?) Soutatsu Tawaraya: Fujin Raijin-zu Hiroki Kashiwazaki R 地域間 I インタークラウド C 分科会 C 90- 00 2001.9.11 the Internet September 11 attacks live migration of VM between distributed areas 雲内放電 広域分散 仮想化環境 after Migration 82p/5min Inter Cloud Lightening TOYAMA site 2003.8.14 Northeast blackout of 2003 TOKYO site before Migration 2011.3.11 in Japan 群馬 Copy to DR-sites Copy to DR-sites OSAKA site 石狩 The aftermath of the 2011 Tohoku earthquake and tsunami Copy to DR-sites real time and active-active features seem to be just a simple "shared storage". Live migration is also possible between DR sites (it requires common subnet and fat pipe for memory copy, of course) DR Distcloud 1978 Disaster Recovery Sun Information Systems Gunmma prefecture BCP Business Continuity Plan 2つで 十分ですよ? Ishikari city 82p/5min 琉球大学 40 0 10MB 0 64 16 random write 40000 20000 Global VM migration is also available by sharing "storage space" by VM host machines. Real time availability makes it possible. Actual data copy follows. (VM operator need virtually common Ethernet segment and fat pipe for memory copy) backend (core servers) File block block block block block block block block 40000 20000 0 16384 4096 256 1024 409616384 65536 262144 16 1.04858e+06 4.1943e+06 File size in 2^n KBytes 1.67772e+07 4 6.71089e+07 64 1024 256 Record size in 2^n Kbytes POSIX準拠 TOYAMA site NFS, CIFS, iSCSI Copy to DR-sites TOKYO site before Migration OSAKA site propos ed metho d Copy to DR-sites real time and active-active features seem to be just a simple "shared storage". Live migration is also possible between DR sites (it requires common subnet and fat pipe for memory copy, of course) NFS CIFS iSCSI r=2 e=0 ACK r=1 block redundancy =3 r=0 VM 広島大学 1GB redundancy =3 10GB File size bkwd read record rewrite 60 40 20 0 60 40 20 10MB 100MB 1GB 0 10GB Throughput (MB/sec) 100 80 80 60 40 100MB 1GB 0 10GB 60 40 20 20 10MB File size 80 10MB 100MB File size 1GB 10GB 0 10MB 40 Throughput (MB/sec) 100 60 80 60 40 20 10MB 100MB 1GB 10GB 0 1GB 10GB File size fread 120 100 80 100MB File size fwrite 120 legend 従来方式 Exage/Storage 広域対応 Exage/Storage 80 SINET4 Kanazawa University EXAGE L3VPN 60 40 20 10MB 100MB 1GB 10GB 0 10MB File size 100MB 1GB 10GB File size SC2013 当初の予定 2013/11/17∼22 We have been developing a widely distributed cluster storage system and evaluating the storage along with various applications. The main advantage of our storage is its very fast random I/O performance, even though it provides a POSIX compatible file system interface on the top of distributed cluster storage. @Colorado Convention Center NFS 本番 r = -1 e=2 external Hypervisor shared write hash 100MB r=0 e=1 r=1 e=0 r=2 ACK consistent Meta Data after Migration Copy to DR-sites 10MB Read (before migration) Read (after migration) Write (before migration) Write (after            migration)              live migration of VM between distributed areas interface protocl SINET4 Hiroshima University EXAGE L3VPN 40 ) 064 60000 60 0 10GB 120 Throughput (MB/sec) File size in 2^n KBytes t (MB/sec Kbytes/sec 60000 High Random R/W Performance 80000 1GB File size 100 Throughpu requirement 80000 100000 100MB 100 File size 120000 80 20 10MB 120 0 100000 reread 40 120 4 256 1024 4096 1638465536 1.04858e+06 262144 4.1943e+066.71089e+07 1.67772e+07 下條真司 Shinji Shimojo @Osaka Univ, NICT 面白く ないよね! 国際回線を 国際回線上での 本番 RTT=244ms 1Gbps 金沢大学 iozone -aceI problems 100 60 0 10GB 100 20 120000 1GB 120 80 stride read 64 Throughput (MB/sec) 16384 4096 1024 256 64 Record size in 2^n Kbytes 100MB Throughput (MB/sec) 256 20000 256 1024 409616384 65536 262144 16 1.04858e+06 4.1943e+06 File size in 2^n KBytes 1.67772e+07 4 6.71089e+07 CloudStack 4.0.0 120 80 20 10MB File size Throughput (MB/sec) 1024 40000 40000 064 40 100 Throughput (MB/sec) 60000 20000 60 0 10GB 120 4096 80000 60000 1GB random read 16384 100000 80000 100MB File size 120000 100000 read 100 80 20 20 Throughput (MB/sec) 60 Throughput (MB/sec) Throughput (MB/sec) 80 XenServer 6.0.2 CloudStack 4.0.0 120 100 100 Record size in 2^n Kbytes Distributed Storage rewrite 120 120 Kitami Institute of Technology XenServer 6.0.2 write write 120000 SINET 最長 University of the Ryukyus 国立情報学研究所 Throughput (MB/sec) point of sales RTT > 100ms ≒50ms shared storage POS Realtime Processing Kbytes/sec 80- 90 mainframe hot site 北見工大 DCダウン時の 今年は 折り返し
  9. 9. live migration of VM between distributed areas after Migration 広域分散 仮想化環境 TOYAMA site Copy to DR-sites TOKYO site Copy to DR-sites OSAKA site Copy to DR-sites real time and active-active features seem to be just a simple "shared storage". Live migration is also possible between DR sites (it requires common subnet and fat pipe for memory copy, of course) before Migration
  10. 10. Distcloud
  11. 11. DR Disaster Recovery
  12. 12. 1978
  13. 13. Sun Information Systems
  14. 14. mainframe hot site
  15. 15. 80- 90
  16. 16. Realtime Processing
  17. 17. POS point of sales
  18. 18. 90- 00
  19. 19. the Internet
  20. 20. 2001.9.11 September 11 attacks
  21. 21. 2003.8.14 Northeast blackout of 2003
  22. 22. in Japan
  23. 23. 2011.3.11 The aftermath of the 2011 Tohoku earthquake and tsunami
  24. 24. BCP Business Continuity Plan
  25. 25. 群馬 Gunmma prefecture
  26. 26. 石狩 Ishikari city
  27. 27. 2つで 十分ですよ?
  28. 28. 国立情報学研究所
  29. 29. 北見工大 University of the Ryukyus 琉球大学 SINET 最長 Kitami Institute of Technology
  30. 30. XenServer 6.0.2 CloudStack 4.0.0 CloudStack 4.0.0 XenServer 6.0.2
  31. 31. problems
  32. 32. shared storage
  33. 33. ≒50ms
  34. 34. RTT > 200ms
  35. 35. 分散ストレージ distributed storage
  36. 36. 要求性能 required quality
  37. 37. 120000 120000 Kbytes/sec 100000 80000 60000 40000 20000 064 100000 High Random R/W Performance 80000 60000 40000 20000 0 16384 4096 1024 256 1024 409616384 65536 262144 16 1.04858e+06 4.1943e+06 File size in 2^n KBytes 1.67772e+07 4 6.71089e+07 256 64 Record size in 2^n Kbytes
  38. 38. POSIX準拠 interface protocl NFS, CIFS, iSCSI
  39. 39. Con$idential Global VM migration is also available by sharing "storage space" by VM host machines. Real time availability makes it possible. Actual data copy follows. (VM operator need virtually common Ethernet segment and fat pipe for memory copy) live migration of VM between distributed areas after Migration TOYAMA site Copy to DR-sites TOKYO site before Migration Copy to DR-sites OSAKA site Copy to DR-sites real time and active-active features seem to be just a simple "shared storage". Live migration is also possible between DR sites (it requires common subnet and fat pipe for memory copy, of course)
  40. 40. backend (core servers) block File block block block block block block block block Meta Data consistent hash
  41. 41. NFS CIFS iSCSI
  42. 42. r=2 ACK r=1 write r=0 redundancy =3
  43. 43. r=2 e=0 r=0 e=1 r=1 e=0 r = -1 e=2 ACK dundancy =3 external
  44. 44. VM Hypervisor 10Gbps 1/4U server x4 Cisco UCS
  45. 45. 広島大学 大阪大学 金沢大学 国立情報学研究所
  46. 46. iozone -aceI a: full automatic mode c: Include close() in the timing calculations e: Include flush (fsync,fflush) in the timing calculations I: Use DIRECT IO if possible for all file operations.
  47. 47. write 120000 16384 100000 120000 Kbytes/sec 100000 60000 1024 40000 80000 256 20000 60000 0 64 40000 20000 064 16 16384 4096 1024 256 1024 409616384 65536 262144 16 1.04858e+06 4.1943e+06 File size in 2^n KBytes 1.67772e+07 4 6.71089e+07 64 64 4 256 1024 4096 1638465536 1.04858e+06 262144 4.1943e+066.71089e+07 1.67772e+07 256 Record size in 2^n Kbytes File size in 2^n KBytes Record size in 2^n Kbytes 4096 80000
  48. 48. write rewrite read reread 100 100 100 80 60 40 60 40 20 20 0 80 10MB 100MB 1GB 0 10GB Throughput (MB/sec) 120 Throughput (MB/sec) 120 Throughput (MB/sec) 120 100 Throughput (MB/sec) 120 80 60 40 20 10MB 100MB 1GB 0 10GB random read 60 40 20 10MB 100MB File size File size 80 1GB 0 10GB random write bkwd read 1GB 10GB record rewrite 100 100 100 80 60 40 20 0 80 60 40 20 10MB 100MB 1GB 0 10GB Throughput (MB/sec) 120 Throughput (MB/sec) 120 Throughput (MB/sec) 120 100 Throughput (MB/sec) 100MB File size 120 80 60 40 10MB 100MB 1GB 0 10GB 10MB 100MB File size stride read fwrite 1GB 10GB 100 0 Throughput (MB/sec) 100 Throughput (MB/sec) 100 20 80 60 40 20 10MB 100MB 1GB File size 10GB 0 100MB 1GB File size 10MB 100MB 1GB legend 従来方式 Exage/Storage 広域対応 Exage/Storage 80 60 40 20 10MB 0 File size 120 40 40 fread 120 60 60 File size 120 80 80 20 20 File size Throughput (MB/sec) 10MB File size 10GB 0 10MB 100MB 1GB File size 10GB 10GB
  49. 49. SINET4 Hiroshima University EXAGE L3VPN SINET4 Kanazawa University EXAGE L3VPN
  50. 50. Read (before migration) Read (after migration) Write (before migration) Write (after            migration)              Through put (MB/sec ) propo sed metho d shared NFS
  51. 51. SC2013 2013/11/17∼22 @Colorado Convention Center
  52. 52. We have been developing a widely distributed cluster storage system and evaluating the storage along with various applications. The main advantage of our storage is its very fast random I/O performance, even though it provides a POSIX compatible file system interface on the top of distributed cluster storage.
  53. 53. 当初の予定
  54. 54. 下條真司 Shinji Shimojo @Osaka Univ/JGN-X Leader
  55. 55. 面白く ないよね!
  56. 56. 本番
  57. 57. 本番 折り返し RTT=244ms 1Gbps
  58. 58. 国際回線を 使用した マイグレーション
  59. 59. 国際回線上での 広域分散ストレージ のアクセス試験
  60. 60. DCダウン時の DR実現検証
  61. 61. 今年は 拠点を 米国に
  62. 62. Future Works
  63. 63. Big Data Analysis
  64. 64. モバイルデバイス からの行動データ behavior data from mobile devices
  65. 65. 電源非供給地域で 収集されるデータ data from non-electrification area
  66. 66. mobile devices high latency power consumption sensor devices personal data aggregation service
  67. 67. mobile devices regional data center low latency regional exchange wide-area distributed platform personal data aggregation service regional data center regional exchange sensor devices
  68. 68. 経路最適化
  69. 69. 【今後の展開】仮想計算機の流動性向上に向けて VM VM migration VM 18
  70. 70. 拠点間マイグレーションにおける経路最適化の実現 Layer VM L2 + L2 VPLS, IEEE802.1ad PB(Q-in-Q), IEEE802.1ah(Mac-in-Mac) L2 over L3 IP VXLAN, OTV, NVGRE ( L3 IP L3 SDN ID/Locator OpenFlow ID Locator LISP IP L4 L7 IP MAT, NEMO, MIP(Kagemusha) mSCTP SCTP DNS + Reverse NAT IP ( L2 / L3 SCTP Dynamic DNS VM Reverse NAT L2 / L3 IP 21
  71. 71. 2011.3.11 The aftermath of the 2011 Tohoku earthquake and tsunami
  72. 72. Japan Taiwan Indonesia New Zealand
  73. 73. 4th RICC workshop @Okinawa 2014/3/27(Thu)∼28(Fri)
  74. 74. http://ricc.itrc.net
  75. 75. そういえば任期が 2014/3/31まで なので… Cybermedia Center Osaka University
  76. 76. 転職先 探しています
  77. 77. おあとが よろしい ようで
  78. 78. go to next stage

×