Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

урок3

930 views

Published on

  • Be the first to comment

  • Be the first to like this

урок3

  1. 1. Урок для 11 класса. Тема: «Применение производной к решению задач». Цели урока:  Обучающие: повторить основные формулы и правила дифференцирования, применение производной к исследованию функции, нахождению наибольшего и наименьшего значения функции, физический и геометрический смысл производной; сформировать умение комплексного применения знаний, умений, навыков и их перенос в новые условия; проверить знания, умения, навыки учащихся по данной теме.  Воспитательные: содействовать формированию творческой деятельности учащихся.  Развивающие: содействовать развитию мыслительных операций: анализ, синтез, обобщение; формированию умений самооценки и взаимооценки. Оборудование:  Мультимедийный проектор.  Презентация с целеполаганием и заданиями.  Приложения с основными формулами и правилами дифференцирования (для каждого ученика).  Карточки с заданиями.  Карточки для проведения рефлексии, оценочные листы  Разноуровневое домашнее задание. План урока:1. Организационное начало урока, целеполагание. (4 минуты)2. Актуализация знаний (8 минут)3. Групповая работа (13 минут)4. Проверка выполненных заданий. (10 минут)5. Итог занятия, рефлексия. (5 минуты)6. Домашнее задание. Ход урока:1. Организация начала урока. Целеполагание. Время: 4 минуты Форма: фронтальная работа. Учителем сообщается тема урока и предлагается ученикам определить цели урока и самостоятельно выбрать из предложенных трёх групп цели, которые они ставят для себя на данном уроке. Демонстрация целей идёт с помощью мультимедийного проектора. Цели классифицируются по мотивам обучения:Ахмедова 1 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»
  2. 2.  Когнитивные: уточнить основные понятия и законы темы, углублённо рассмотреть конкретные вопросы во время решения задач.  Креативные: провести самостоятельное исследование по теме, применить имеющиеся знания в нестандартной ситуации.  Оргдеятельностные: проявить и развить свои способности, организовать свои цели, составить реальный план, выполнить его и оценить свои результаты.На основании выбранных целей учащиеся поднимают кружок определённогоцвета: 1 группа – коричневый, 2 группа – красный, 3 группа – зелёный.2. Актуализация субъективного опыта учащихся, их знаний. Время: 8 минут Метод: репродуктивный Форма: фронтальная работа Задача: повторить и закрепить навыки вычисления производной, применение производной к решению задач; проверить сформированность грамотной математической речи. Форма подачи заданий: мультимедийный проектор. Ответы учащиеся демонстрируют на переносных досках.Задание 1.1. Зная правило дифференцирования произведения двух функций, составьтеформулу (u∙v∙w)΄ = …Ответ: u΄vw + uv΄w + uvw΄2. Зная связь первой производной и экстремумов, установите, как определитьвид экстремума по второй производной.Задание 2.Составить алгоритм отыскания промежутков выпуклости вверх и вниз дляфункции у = 2х6 – 5х4.Ответ: 1. у΄=12х5 – 20х3 2. у΄΄=60х4 – 60х2 3. у΄΄=0 при х=0, х=1, х=-1. 4. у΄΄> 0, функция выпукла вниз при х ≤ -1, х ≥ 1. 5. у΄΄< 0, функция выпукла вверх при -1 ≤ х ≤ 1.Задание 3.Установить соответствие между предложенными графиками у=f΄(x) иформулами, задающими функцию у=f(x).1. у=х2-1 2. у=х3- 1 3. у=(х-1)2 4. у=-х2 -1 А Б В ГОтветы:Ахмедова 2 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»
  3. 3. 1- Б, 2 – А, 3 – Г, 4 – В.Анализ итогов работы.3. Применение знаний и умений. Время: 13 минут Метод: частично – поисковый Форма: групповая письменная Задача: содействовать формированию активной творческой деятельности, развивать мотивацию учащихся, сформировать умение комплексного применения знаний, умений, навыков и их перенос в новые условия; проверить знания, умения, навыки учащихся по данной теме. Форма подачи заданий: карточкиУчащиеся согласно заявленным целям на урок распределяются по группам,заполняют оценочный лист. 1 2 3Каждой группе предлагаются задания.Группа 1. Когнитивные мотивы обучения. 1I. По графику производной схематически изобразить график функции и график второй производной.II. Определите значение параметра b, при котором функция x y= возрастает на отрезке [b-5; b+4]. exГруппа 2. Креативные наклонности. 2I. По предложенному решению составить условие задачи.Решение:Ахмедова 3 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»
  4. 4. 1. D(у) = R y΄=-3x2-12x, k(x 0 )=-3x 0 2 - 12x 0 ,2. 1 способ х в =12:(-6)=-2 2 способ k΄(x 0 ) = -6x 0 – 12 k΄ + - k΄(x 0 ) = 0 при x 0 = -2 -2 k max х max = -23. у=f(x 0 ) + f΄(x 0 )(x- x 0 ) у=-13 + 12(х+2) у=12х + 11II. Предложите несколько формул, задающих функцию у=f(x), если 6x 18 f ′( x) = 4 cos(2 x − 1) sin( 2 x − 1) + − 6x 2 − 1 (3 x − 1) 4(данное задание является пропедевтическим для изучения темы«Первообразная»)Группа 3. Оргдеятельностные приоритеты деятельности.I. Описать алгоритм нахождения наибольшего и наименьшего значения функции у=f(x) на 3отрезке [a;b]. Составить блок-схему.II. Составить план решения следующей задачи: Материальная точка движется прямолинейно по закону х(t)=18t2 – t3 (x- вметрах, t- в секундах). Определите, в какой момент времени из промежутка[4;8] скорость точки будет наибольшей и найдите в это время ускорение.4. Защита учащимися выполненных работ. Время: 10 минут Форма: фронтальная Задача: проверить знания, умения, навыки учащихся по данной теме.Учащиеся оформляют решения на доске и поясняют ход выполнениязаданий. Каждая группа, выслушивая защиту других, готовит им вопросы.Работа первой группы.№ 1.Для графика функции у=f(x): f΄(x)>0 ⇒ f(x) возрастает [-5;-2,8],[-0,4;3,5] f΄(x)<0 ⇒ f(x) убывает [-2,8;-0,4,[3,5;5] f΄(x)=0 и производная меняет знак с плюса на минус при х=-2,8 и х=3,5⇒ х=-2,8 и х=3,5 точки максимума f΄(x)=0 и производная меняет знак с минуса на плюс при х=-0,4⇒ х=-0,4 точка минимумаДля графика функции у=f ΄΄(х): f΄(x) убывает на промежутках [-3,5;-1,5], [0,5;1,5], [2,8;5] значит функция у=f΄΄(x)Ахмедова 4 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»
  5. 5. отрицательна на этих промежутках и обращается в нуль при х=-3,5, х=-1,5, х=0,5, х=1,5, х=2,8 f΄(x) возрастает на промежутках [-5;-3,5], [-1,5;0,5], [1,5;2,8] значит функция у=f΄΄(x) положительна на этих промежутках. 1− x№ 2. D(у)=R, y ′ = , у΄>0 при х <1 и непрерывна при х=1, значит функция exвозрастает на промежутке (-∞; 1], т.е. b+4≤1, b≤-3.Работа второй группы.№ 1. Учащиеся представляют составленные ими условия задачи. Классупредлагается проанализировать решение и условия и выбрать наиболееточную формулировку.Формулировка учителя: Напишите уравнение касательной к графикуфункции у=-х3-6х2+3, которая имеет наибольший угловой коэффициент. 2№ 2. f ( x) = cos 2 (2 x − 1) + 6 x 2 − 1 + (3 x − 1) 3Все остальные функции будут отличаться от данной свободным членом.Работа третьей группы.№ 1.Найти наибольшее значение функции y=f(x) на отрезке [a,b].1. Найти производную данной функции.2. Найти критические точки.3. Выбрать критические точки, принадлежащие заданному отрезку.4. Найти значение функции в отобранных критических точках и концахотрезка.5. Выбрать наибольшее значение функции.№ 2. План решения Реализация плана1. Отыскать функцию, задающую 1. V(t)=x΄(t), V(t)=36t – 3t2скорость у= V(t).2. Найти производную функции V(t). 2. V΄ (t)= 36 – 6t3. Указать критические точки. 3. V΄ (t)=0 при t=64. Выбрать точки, принадлежащие 4. 6 принадлежит отрезку [4,8]отрезку [4,8]5. Найти значение функции V(t) при 5. V(4)=96 м/с, V(6)=108 м/с,х=4, х=6, х=8 V(8)=96м/с6. Записать ответ, выбрав наибольшее 6. max V(t) = V(6) =108 м/сиз найденных значений. [4;8] Блок-схема № 1.Ахмедова 5 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»
  6. 6. у=f(x), [a;b] y= f΄(x) да f΄(x)=0 нет х1, х2… хn да нет f(a)> f(b) да х1, … хn нет max f(x) = f(a) max f(x) = f(b) лежат на [a,b] отрезке f(x1), f(x2)… f(xn), f(a), f(b) да нет f(x1)- наиб да f(xn)- нетmax f(x) = f(х1) наиб[a,b] max f(x) = f(хn) [a,b] 5. Подведение итогов урока, рефлексия. Время: 5 минут Задача: определить уровень достижения целей урока и меру участия каждого учащегося в занятии, оценка работы школьников. Рефлексия. Ахмедова 6 город Горловка Татьяна УВК « ОШ I ст№65, Александровна МПГ « Триумф»
  7. 7. На листочках для рефлексии учащимся предлагается изобразить в видепрямых, как изменялись во время урока три параметра: личная активность,самочувствие, самостоятельность. По шкале ординат отмечено время урока.о мин 0 мин мин 15 30 45 15 30 45 15 30 45 активность самостоятельность самочувствиеКаждая группа заполняет оценочные листы.Заслушиваются итоги каждой группы. № Ф.И. Самооценка Оценка группы1.2.…6. Домашнее задание.Ученикам предлагается домашнее задание по трём уровням сложности,обращается внимание на номер третий, он одинаковый у всех и являетсядополнительным. Домашнее задание. Группа А Группа В Группа С1. Проводятся касательные 1. Напишите уравнение 1. Найдите все отрицательныек графику функции y = 3x – такой касательной к a, для каждого из которых x2 в точке с абсциссой 2 и в графику функции касательные к параболеточке максимума. Найдите y = (2 x + 3) 2 x + 3 + x 2 , у = (х-1)2, проведенные черезплощадь треугольника, точку оси Oy с ординатой a которая не пересекает высекают на оси Ox отрезокобразованного осью прямую у = хординат и этими длины 4.касательными. 2. Придумайте функцию, у2. Придумайте функцию 2. Придумайте непрерывную которой два минимума и ни функцию, график которойy = f(x), у которой значение одного максимума. Задайтев точке максимума меньше будет иметь наклонную её формулой, исследуйте и асимптоту, задаваемуюзначения в точке постройте график. уравнением у=0,5х-1. Опишитеминимума. эту функцию своими3. Составьте блок-схему 3. Составьте блок-схему для свойствами.для исследования функции исследования функции сс помощью производной. помощью производной. 3. Составьте блок-схему для исследования функции.Ахмедова 7 город ГорловкаТатьяна УВК « ОШ I ст№65,Александровна МПГ « Триумф»

×