Multisensor data fusion in object tracking applications


Published on

Published in: Education, Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Multisensor data fusion in object tracking applications

  1. 1. Multisensor Data Fusion in Object Tracking Applications S.A.Quadri and Othman Sidek Collaborative µ-electronic Design Excellence Centre Universiti Sains Malaysia
  2. 2. <ul><li>Presentation Overview </li></ul><ul><li>1)Introduction to Data fusion </li></ul><ul><li>Definition </li></ul><ul><li>Applications </li></ul><ul><li>2) Object tracking </li></ul><ul><li>Definition </li></ul><ul><li>Decentralized Kalman filter </li></ul><ul><li>3)Simulation and results </li></ul>
  3. 3. <ul><li>DATA FUSION </li></ul><ul><li>Data-fusion is a problem-solving technique based on the idea of integrating many answers to a question into a single; best answer. </li></ul><ul><li>Process of combining inputs from various sensors to provide a robust and complete description of an environment or process of interest. </li></ul><ul><li>Multilevel, multifaceted process dealing with the automatic detection, association, correlation , estimation, and combination of data and information from single and multiple sources. </li></ul><ul><li>“ Properly said, fusion is neither a theory nor a technology in its own. It is a concept which uses various techniques pertaining to information theory, artificial intelligence and statistics [1] ” </li></ul><ul><li>[1] David L. Hall & James Llinas, “Introduction to Multisensor Data Fusion”, IEEE , Vol. 85, No. 1, pp. 6 – 23, Jan 1997. </li></ul>
  4. 4. <ul><li>Multisensor data fusion Applications : </li></ul><ul><li>Military application : </li></ul><ul><li>Location and characterization of enemy units and weapons </li></ul><ul><li>High level inferences about enemy situation </li></ul><ul><li>Air to air or surface to air defense </li></ul><ul><li>Ocean monitoring </li></ul><ul><li>Battlefield intelligence </li></ul><ul><li>Strategic warning </li></ul><ul><li>Non military applications: </li></ul><ul><li>Condition based maintenance </li></ul><ul><li>Detection of system faults </li></ul><ul><li>Robotics </li></ul><ul><li>Medical </li></ul><ul><li>Environmental monitoring </li></ul><ul><li>Location and identification </li></ul><ul><li>of natural phenomena </li></ul>
  5. 5. DATA FUSION APPLICATION IN ESTIMATION PROBLEMS Application Dynamic system Sensor Types Process control Chemical plant Pressure Temperature Flow rate Gas analyzer Flood predication River system Water level Rain gauge Weather radar Tracking Spacecraft Radar Imaging system Navigation Ship Sextant Log Gyroscope Accelerometer Global Navigation satellite system
  6. 6. <ul><li>Multisensor data fusion provides significant advantages over single source data </li></ul><ul><li>Improves accuracy </li></ul><ul><li>Improves precision </li></ul><ul><li>Supports effective decision making </li></ul>Schematic diagram of data fusion
  7. 7. <ul><li>Object tracking </li></ul><ul><li>Object tracking can be defined as the problem of estimating the trajectory of an object in the image plane as it moves around a scene. </li></ul><ul><li>A tracker can also provide object-centric information, such as </li></ul><ul><li>Orientation </li></ul><ul><li>Area </li></ul><ul><li>Shape of an object </li></ul>
  8. 8. <ul><li>Tracking objects can be complex due to many reasons like </li></ul><ul><li>Loss of information </li></ul><ul><li>Introduction of noise </li></ul><ul><li>Complex object motion </li></ul><ul><li>Non-rigid or articulated nature of objects </li></ul><ul><li>Complex object shapes </li></ul><ul><li>Lack of real-time processing requirements. </li></ul>
  9. 9. SIMULATION OF TARGET TRACKING AND ESTIMATION USING DATA FUSION Objective: Target tracking and estimation of a moving object Sensors used: Multiple sensors => Position estimation sensors => Velocity estimation sensors Need for heterogeneous multi sensors ? =>It is not possible to deduce a comprehensive picture about the entire target scenario from each of the pieces of evidence alone. =>Due to the inherent limitations of technical features characterizing each sensor. Coordinate system Selected : Cartesian coordinate system Technique applied : Multisensor data fusion using Kalman filter
  10. 10. The need of Kalman filter ? <ul><li>System state cannot be measured directly </li></ul><ul><li>Need to estimate “optimally” from measurements </li></ul>Measuring Devices Estimator Measurement Error Sources System State (desired but not known) External Controls Observed Measurements Optimal Estimate of System State System Error Sources System Black Box
  11. 11. <ul><li>Kalman filter </li></ul><ul><li>The Kalman filter produces estimates of the true values of measurements and their associated calculated values by </li></ul><ul><li>Predicting a value, </li></ul><ul><li>Estimating the uncertainty of the predicted value, </li></ul><ul><li>and computing a weighted average of the predicted value and the measured value. </li></ul><ul><li>The most weight is given to the value with the least uncertainty. </li></ul><ul><li>The estimates produced by the method tend to be closer to the true values than the original measurements . </li></ul><ul><li>Weighted average has a better-estimated uncertainty than either of the values that went into the weighted average. </li></ul><ul><li>Kalman filter uses </li></ul><ul><li>System's dynamics model (i.e., physical laws of motion), </li></ul><ul><li>Known control inputs to that system, </li></ul><ul><li>Measurements from sensors to form an estimate of the system's varying quantities (its state) </li></ul><ul><li>that is better than the estimate obtained by using any one measurement alone. </li></ul>
  12. 12. Kalman Filtering Equations A – Dynamic coefficient matrix of a continuous linear differential equation defining dynamic system B – Coupling matrix between random process noise and state of a linear dynamic system Q- Covariance matrix of process noise in the system state dynamics R - Covariance matrix of measurement noise in the system state dynamics P- Covariance matrix of state estimation uncertainty K – Kalman gain ; H – Measurement sensitivity ; z- measurement vector :u – control input ŷ - k = Ay k-1 + Bu k P - k = AP k-1 A T + Q Prediction (Time Update) (1) Project the state ahead (2) Project the error covariance ahead Correction (Measurement Update) (1) Compute the Kalman Gain (2) Update estimate with measurement z k (3) Update Error Covariance ŷ k = ŷ - k + K(z k - H ŷ - k ) K = P - k H T (HP - k H T + R) -1 P k = (I - KH)P - k
  13. 13. Decentralized Kalman filter
  14. 14. Simulation has been carried out by with two-dimensional state model of the moving object along x; y and z directions. The program is executed in Matlab environment .
  15. 15. Result and conclusion As shown in figure estimation using state vector fusion method using Kalman filter is more close and accurate to actual track .
  16. 16. <ul><li>Future work: </li></ul><ul><li>Finding the parameters which effect the data fusion performance </li></ul><ul><li>Finding the effect of process noise and measurement noise </li></ul>
  17. 17. Sample code % Missile_Launcher tracking Moving_Object using kalman filter clear all %% define our meta-variables (i.e. how long and often we will sample) duration = 10 %how long the Moving_Object flies dt = .1; %The Missile_Launcher continuously looks for the Object-in-motion , %but we'll assume he's just repeatedly sampling over time at a fixed interval %% Define update equations (Coefficent matrices): A physics based model for A = [1 dt; 0 1] ; % state transition matrix: expected flight of the Moving_Object (state prediction) B = [dt^2/2; dt]; %input control matrix: expected effect of the input accceleration on the state. C = [1 0]; % measurement matrix: the expected measurement given %% define main variables u = 1.5; % define acceleration magnitude Q= [0; 0]; %initized state--it has two components: [position; velocity] of the Moving_Object Q_estimate = Q; %x_estimate of initial location estimation of where the Moving_Object Moving_ObjectAccel_noise_mag = 0.05; %process noise: the variability in Q_loc = []; % ACTUAL Moving_Object flight path vel = []; % ACTUAL Moving_Object velocity Q_loc_meas = []; % Moving_Object path that the Missile_Launcher sees %% simulate what the Missile_Launcher sees over time figure(2);clf figure(1);clf % Generate the Moving_Object flight Moving_ObjectAccel_noise = Moving_ObjectAccel_noise_mag * [(dt^2/2)*randn; dt*randn]; Q= A * Q+ B * u + Moving_ObjectAccel_noise; ......................... pause end %plot theoretical path of Missile_Launcher that doesn't use kalman plot(0:dt:t, smooth(Q_loc_meas), '-g.') %plot(0:dt:t, vel, '-b.') %% Do kalman filtering %initize estimation variables ......................... % Plot the results figure(2); plot(tt,Q_loc,'-r.',tt,Q_loc_meas,'-k.', tt,Q_loc_estimate,'-g.'); %data measured by the Missile_Launcher ……………………… .. %combined position estimate mu = Q_loc_estimate(T); % mean sigma = P_mag_estimate(T); % standard deviation y = normpdf(x,mu,sigma); % pdf y = y/(max(y)); hl = line(x,y, 'Color','g'); % or use hold on and normal plot axis([Q_loc_estimate(T)-5 Q_loc_estimate(T)+5 0 1]); %actual position of the Moving_Object plot(Q_loc(T)); ylim=get(gca,'ylim'); line([Q_loc(T);Q_loc(T)],ylim.','linewidth',2,'color','b'); legend('state predicted','measurement','state estimate','actual Moving_Object position') pause end
  18. 18. ?
  19. 19. Thank You