Nanopatterns – Understanding Emergence of Properties at Scale Robert D. Cormia & Jill N. Johnsen Foothill College
Overview <ul><li>Nanoscience  => the big ideas </li></ul><ul><li>Emergence  => the missing idea </li></ul><ul><li>Nanopatt...
Nanoscience – Big Ideas <ul><li>2006 workshops </li></ul><ul><li>NCLT and SRI </li></ul><ul><li>University of Michigan and...
The Big Ideas <ul><li>Size and scale </li></ul><ul><li>Matter </li></ul><ul><li>Dominant Forces </li></ul><ul><li>Properti...
The Missing Idea <ul><li>Emergence of properties at scale </li></ul><ul><li>We talk about it all the time </li></ul><ul><l...
Emergence Model Archetype Properties Process System Process evolution Archetype Behaviors System process System Archetype ...
Size Dependent Properties “ Molecular Dynamics (MD) simulations of heat transfer based on classical statistical mechanics ...
Size Dependent Properties: Ni nanoparticles  => Nanomagnetism <ul><li>http://www.grin.com/en/doc/231229/size-dependent-mag...
Phonon Network http://en.wikipedia.org/wiki/Phonon Images Wikipedia commons
Nanopatterns <ul><li>Network archetypes </li></ul><ul><li>Memorizing  patterns , vs.  structures </li></ul><ul><li>Pattern...
Nanopatterns Rubric <ul><li>Networks of atoms </li></ul><ul><li>Systems of physics </li></ul><ul><li>Emergence of properti...
Graphene Nanostructure Extended sp 2  hybridized carbon and p-p* network
Graphene as a System
Nanostructures  and  Nanosystems  from carbon  nano-motifs nanostructure Nano-motif (or structural unit) Nanopattern Nanos...
Allotropes of carbon <ul><li>A - diamond </li></ul><ul><li>B - graphite </li></ul><ul><li>C -  lonsdaleite </li></ul><ul><...
Nano-Onion <ul><li>Nano onion is a proposed structure for graphene which wraps itself into larger spheres and then into ch...
 
Borazine Nanomesh <ul><li>Borazine decomposition </li></ul><ul><li>Forms ordered surface network  </li></ul><ul><li>One la...
Borazine Nanomesh
Networks of atoms in novel nanoscale structures <ul><li>“ Dancing Triangles' are formed by sulfur atoms on a layer of copp...
Nanostructures <ul><li>Small networks of atoms </li></ul><ul><ul><li>Liposomes </li></ul></ul><ul><ul><li>Dendrimers </li>...
Each phospholipid is a structural motif, a structure in itself, and a building block in a larger system A system of phosph...
Nanosystems
Summary / References <ul><li>Nanopatterns rubric </li></ul><ul><ul><li>Networks of atoms </li></ul></ul><ul><ul><li>System...
Upcoming SlideShare
Loading in …5
×

Nanopatterns – understanding emergence of properties at scale

1,683 views

Published on

novel pedogogy for understanding the emergence of properties at the nanoscale

Published in: Technology, Business
  • Be the first to comment

Nanopatterns – understanding emergence of properties at scale

  1. 1. Nanopatterns – Understanding Emergence of Properties at Scale Robert D. Cormia & Jill N. Johnsen Foothill College
  2. 2. Overview <ul><li>Nanoscience => the big ideas </li></ul><ul><li>Emergence => the missing idea </li></ul><ul><li>Nanopatterns => a new rubric </li></ul><ul><li>Examples => nanopatterns in use </li></ul><ul><li>Future directions and practice </li></ul>
  3. 3. Nanoscience – Big Ideas <ul><li>2006 workshops </li></ul><ul><li>NCLT and SRI </li></ul><ul><li>University of Michigan and Northwestern University </li></ul><ul><li>Eight big ideas </li></ul><ul><li>A textbook guide </li></ul>
  4. 4. The Big Ideas <ul><li>Size and scale </li></ul><ul><li>Matter </li></ul><ul><li>Dominant Forces </li></ul><ul><li>Properties are size dependent </li></ul><ul><li>Models </li></ul><ul><li>Tools </li></ul><ul><li>Technology and society </li></ul><ul><li>Self assembly </li></ul>The Big Ideas in Nanoscale Science and Engineering Stevens, Sutherland, Schank, & Krajcik, (2007). Collaboration of NCLT, Northwestern University and SRI, in a series of workshops, (culminating in August 2006 in San Luis Obispo)
  5. 5. The Missing Idea <ul><li>Emergence of properties at scale </li></ul><ul><li>We talk about it all the time </li></ul><ul><li>But no one ever explains it </li></ul><ul><li>Because…… </li></ul>Emergence is a very difficult topic to talk about!
  6. 6. Emergence Model Archetype Properties Process System Process evolution Archetype Behaviors System process System Archetype System Constituents Actor Interactions Class properties Archetype process System Properties System behaviors Primitive interactions Emergent Properties
  7. 7. Size Dependent Properties “ Molecular Dynamics (MD) simulations of heat transfer based on classical statistical mechanics allow the atom to have thermal heat capacity through kT energy. Here k is Boltzmann’s constant and T absolute temperature. The above picture shows melting temperatures applied on the left with the right maintained at freezing. The simulation is discreted and submicron. But lacking periodicity, MD solutions of discrete nanostructures are invalid by QM. Here QM stands for quantum mechanics. Unlike statistical mechanics, QM forbids atoms in discrete submicron nanostructures to have heat capacity, and therefore the nanostructure cannot conserve EM energy by an increase in temperature. Without temperature changes, thermal conduction is precluded at the nanoscale.” Melting point is an emergent property Validity of Heat Transfer by Molecular Dynamics - http://www.nanoqed.org/
  8. 8. Size Dependent Properties: Ni nanoparticles => Nanomagnetism <ul><li>http://www.grin.com/en/doc/231229/size-dependent-magnetic-properties- </li></ul>http://www.flickr.com/photos/brookhavenlab/3191719900/in/photostream
  9. 9. Phonon Network http://en.wikipedia.org/wiki/Phonon Images Wikipedia commons
  10. 10. Nanopatterns <ul><li>Network archetypes </li></ul><ul><li>Memorizing patterns , vs. structures </li></ul><ul><li>Patterns of atoms in structural networks </li></ul><ul><li>Atoms as nodes , each with atomic orbitals => focus on bonding networks </li></ul><ul><li>Network archetypes => nanosystems </li></ul><ul><ul><li>Smaller motifs, that expand into systems </li></ul></ul>
  11. 11. Nanopatterns Rubric <ul><li>Networks of atoms </li></ul><ul><li>Systems of physics </li></ul><ul><li>Emergence of properties at scale </li></ul><ul><li>Draw network of atoms for a structural system </li></ul><ul><li>Sketch out the chemical bonding / orbital network </li></ul><ul><li>Look at the extended structure as a system </li></ul>http://en.wikipedia.org/wiki/Pi_bond
  12. 12. Graphene Nanostructure Extended sp 2 hybridized carbon and p-p* network
  13. 13. Graphene as a System
  14. 14. Nanostructures and Nanosystems from carbon nano-motifs nanostructure Nano-motif (or structural unit) Nanopattern Nanosystem Graphene/graphite sp 2 moiety bracket graphene hexagon Extended plane Fullerene sp 2 moiety cap hexagon/pentagon Enclosed sphere Nanotube sp 2 moiety mesh zigzag/armchair mesh Enclosed tube Nanoonion sp 2 moiety (ring?) zigzag/armchair swirl? Nanospheres? Boron nitride nanomesh Trigonal BN BN hexagonal ring Planar honeycomb Self Assembled Monolayers alkane (head and tail) 1-2 dimensional SAM 2 dimensional sheet Liposomes phospholipid unit Phospholipid bilayer Spherical bilayers Dendrimers g-0 functional branch Fractal branch (G-x) Spherical/functionalized macro-molecule
  15. 15. Allotropes of carbon <ul><li>A - diamond </li></ul><ul><li>B - graphite </li></ul><ul><li>C - lonsdaleite </li></ul><ul><li>D - C 60  Buckminsterfullerene </li></ul><ul><li>E - Amorphous carbon </li></ul><ul><li>F - C 70 </li></ul><ul><li>G - C 540 </li></ul><ul><li>H - single-walled carbon nanotube  </li></ul>http://en.wikipedia.org/wiki/Allotropes_of_carbon
  16. 16. Nano-Onion <ul><li>Nano onion is a proposed structure for graphene which wraps itself into larger spheres and then into chains. The mechanism for forming the spheres is not known, but might be influenced by the chirality of the nanocarbon network, i.e., the armchair/zigzag m/n ratio. This factor can be measured in Raman G band (as G- and G+), and additionally in solid state 13C NMR. Nano-onion is an example of an extended nanostructure becoming a nanosystem, and having levels of unfolding complexity at scales of tens, hundreds, and thousands of Angstroms. The ability to ‘tune’ the chirality of the graphene networks, and alter the unfolding structure at the mesoscale, is one of the goals of combining the nanopatterns rubric with PNPA. </li></ul>
  17. 18. Borazine Nanomesh <ul><li>Borazine decomposition </li></ul><ul><li>Forms ordered surface network </li></ul><ul><li>One layer thick (like graphene) </li></ul><ul><li>Extended structure </li></ul><ul><li>Emergent properties </li></ul>http://en.wikipedia.org/wiki/Nanomesh
  18. 19. Borazine Nanomesh
  19. 20. Networks of atoms in novel nanoscale structures <ul><li>“ Dancing Triangles' are formed by sulfur atoms on a layer of copper, which in turn rests upon a base, or 'substrate' of ruthenium. Scientists at Brookhaven Lab will study this type of configuration to understand how metal behaves on top of another. Layered metals are often used as catalysts, such as those that clean pollutants from automobile exhaust in catalytic converters.” </li></ul>Flickr Brookhaven Laboratory Stream http://www.flickr.com/photos/brookhavenlab/3191719710/in/photostream /
  20. 21. Nanostructures <ul><li>Small networks of atoms </li></ul><ul><ul><li>Liposomes </li></ul></ul><ul><ul><li>Dendrimers </li></ul></ul><ul><ul><li>Carbon nanotubes </li></ul></ul><ul><ul><li>Self Assembled Monolayers </li></ul></ul><ul><ul><li>Unit cells of extended nanostructured materials </li></ul></ul><ul><ul><ul><li>Graphene </li></ul></ul></ul><ul><ul><ul><li>Nanomesh </li></ul></ul></ul>
  21. 22. Each phospholipid is a structural motif, a structure in itself, and a building block in a larger system A system of phospholipids that is an emergent structure itself. Liposomes and cellular vessicles http://en.wikipedia.org/wiki/Exosome_(vesicle) http://en.wikipedia.org/wiki/Phospholipid
  22. 23. Nanosystems
  23. 24. Summary / References <ul><li>Nanopatterns rubric </li></ul><ul><ul><li>Networks of atoms </li></ul></ul><ul><ul><li>Systems of physics </li></ul></ul><ul><ul><li>Emergence of properties at scale </li></ul></ul><ul><li>Nanostructures => nanosystems </li></ul><ul><li>The Big Ideas in Nanoscale Science and Engineering Stevens, S. Y., Sutherland, L., Schank, P., & Krajcik, J. (2007). </li></ul><ul><ul><li>http://www.mcrel.org/Nanoteach/pdfs/big_ideas.pdf </li></ul></ul>

×