Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Capacity building 2010 day 2 yehia shankir sweg


Published on

Capacity Building in the Field of Wind Energy, Stage II
29 March - 2 April, 2010

  • Be the first to comment

  • Be the first to like this

Capacity building 2010 day 2 yehia shankir sweg

  1. 1. RCREEE Wind Energy Building Capacity Program – Stage 2 Rabat, Tangier 29  March – 2nd April 2010 pReview of Wind Turbines’ Drive Systems and why  Gearless Direct Drive  Gearless Direct Drive DR Yehia Shankir 1
  2. 2. Contents1. EL Sewedy Electric & SWEG1 EL Sewedy Electric & SWEG2. Wind Turbines’ components and generator types3. Wind Turbines’ drive systems advantages and 3 Wi d T bi ’ d i d d disadvantages4. Comparisons of Wind Turbines’ drive systems5. Conclusions6. Appendix7. References 2
  3. 3. 3
  4. 4. Elsewedy 4
  5. 5. 5
  6. 6. EL Sewedy Electric Wind EL Sewedy Electric Wind Sector 6
  7. 7. I‐ TOWERSSIAG Company Overview• The leading tubular steel tower supplier in  Germany and Europe• Market share more than 30%  • Leading technology in steel industry• Nearly 1000 employees• Proven track‐record of growth in Europe f th i E 7
  8. 8. II‐ TURBINES M‐Torres Company Overview  One of the most Innovative  Engineering companies in Spain  Started in the paper industries &  now one of the leaders in  supplying machines for the  aerospace industry A total of 500 high skilled  employees  M‐Torres Wind Division MT Wi d Di i i 2001 the first innovative 1.5 MW prototype MTOI engineering,  MTOI engineering manufacturing,  development, O&M 8
  9. 9. III  BLADES Wind Rotor Blades Factory in Egypt State of the art  production   State of the art production technology transfer from a  leading German manufacturer. State of the art  Blades Design  licensed by leading Dutch and  licensed by leading Dutch and German Designers The factory will be equipped  with the most advanced  Fiberglass moulds and  Fib l ld d equipment to produce 200 sets  of blades in stage 1 expandable  to 500 sets Nearly 500 employees and  technicians will be employed in  the first stage 9 9
  10. 10. SWEGEL Sewedy for Wind Energy Generation EL S d f Wi d E G ti the Wind Sector Arm 10
  11. 11. Wind Turbines’ components and g generator types yp 11
  12. 12. Wind Turbine System Main  Wind Turbine System Main ComponentsMechanical PM h i l Power Electrical P El t i l Power Wind Power  Gearbox Power Converter  Transformer Grid Rotor (Optional) Generator (Optional) Gearless Systems Gearless Systems Geared Systems Geared SystemsElectrical Excited  Squirrel Cage Synchronous  Induction Generator Generator (EESG)Generator (EESG) Types of ( (SCIG) ) GeneratorsPermanent Magnet  (AC Machines) Double Feed Synchronous  Induction Generator Generator (PMSG)Generator (PMSG) (DFIG) 12
  13. 13. Wound Rotor  IM Squirrel Cage IMInduction Machine +ve  T Grid Motor Generator Generator Sub Synch (+ve slip) Super synch (‐ve slip) ‐ve T ‐ve T Motor Operating Torque T Synch   Speed =  120 f/ p /p 13
  14. 14. Synchronous Generator Synchronous GeneratorWound Rotor Permanent Magnet Generator Freq = P x n  / /120 Vdc 14
  15. 15. Wind Turbines’ Drive Systems,advantages and disadvantages g g 15
  16. 16. The Typical Types of Drive Systems for Large  The Typical Types of Drive Systems for Large Wind Turbines Fixed Speed Squirrel C S i l CageInduction Generator (SCIG) Variable Speed Double Feed Induction Generator (DFIG) Variable Speed Electrical Excited Synch Generator (EESG) Variable Speed Permanent Magnet Synch Generator (PMSG) 16
  17. 17. Squirrel C S i l Cage Induction G I d ti Generatort Geared, (SCIG)Directly connected to grid ‐ve A gearbox is required in the drive train TorqueAlmost a Fixed speed. Operates in narrow Al Fi d d O i P=4 P=2range of speedThe only speed control is through pole changing which leads two rotation speeds. % of Synch Speed 17
  18. 18. Advantages of Geared SCIGCost (SCIG) is a very popular machine, it has Low  specific mass (kg/kW) and smaller outer  diameter (low number of poles)hence lower  di t (l b f l )h l cost.Mechanical, Maintenance & Reliability  h i l i & li bili Mechanical simplicity, robust structure 18
  19. 19. Disadvantages of Geared SCIGMechanical, Reliability & Maintenance Control A gearbox in the drive train is required: No possibility of speed control, only a pole‐Electrical & Power Quality changeable can be  used ,which leads two  Directly connected to the grid Directly connected to the grid rotation speeds.  p SCIG would disconnect from the grid  The turbine speed cannot be adjusted to the  even during quite small disturbances.  wind speed to optimize the aerodynamic  They did not have any fault ride‐ Th did t h f lt id efficiency. efficiency.` through capability,  Wind speed fluctuations are directly  The machine always requires reactive  translated into electromechanical torque  power, and its value cannot be  variations (no damping control), This causes  variations (no damping control) This causes controlled. This makes it impossible to  high mechanical and fatigue stresses on the  support grid voltage control therefore  system (P = T .  W) no grid support, Need different gearboxes for different  grid frequencies 50Hz / 60 Hz 19
  20. 20. Double Fed Induction Generator, Geared, (DFIG) Power flow in Power flow in O Operating  i +ve  Speed T Power flow out N3 N1 N2Directly connected to grid Motor ‐ve  GeneratorRotor Connected to grid via power  Tconverter Operating  Torque TA gearbox is required in the drive trainVariable speed, Speed can be controlled Variable speed, Speed can be controlledwithin a +/‐ 30% around synchronous speed (The converter is Feeding or Absorbing power from/to the grid)Absorbing power from/to the grid) 20
  21. 21. Advantages of Geared DFIGCost Low specific mass (kg/kW) and smaller outer diameter (low number of  Low specific mass (kg/kW) and smaller outer diameter (low number of poles) hence lower cost. The converter for a DFIG is small (30% of rated power). Therefore it is  cheaper than for a direct‐drive generator. h th f di t d i t More complex structure than SCIGElectrical & Power Quality The reactive power can be controlled by controlling the rotor currents with  the converter, this allows the supply of voltage support towards the grid.  However reactive power is limited by the converter 30% rating. However reactive power is limited by the converter 30% rating.Control DFIG supports a wide speed range operation, depending on the size of the  frequency converter. Typically Variable speed range is +30% around the  f t T i ll V i bl d i +30% d th synchronous speed In DFIG, wind gusts lead to variations in the speed without large torque  variations. 21
  22. 22. Disadvantages of Geared DFIGMechanical, Reliability & Maintenance A gearbox in the drive train is required which show a reliability  negative record. DFIG have brushes, which need regular inspection and replacement.  DFIG have brushes which need regular inspection and replacement They are a potential cause of machine failure and losses.Electrical & Power Quality Stator directly connected to grid d l d d According to  grid connection requirements for wind turbines, in case  of grid disturbances, a ride‐through capability of DFIG is required, so  that the corresponding control strategies may be complicated. Under grid fault conditions, on the one hand, large stator currents  result in large rotor currents, so that the power electronic converter  g , p needs to be protected Need different gearboxes for different grid frequencies 50Hz /60 Hz 22
  23. 23. Electrical Excited Synchronous Generator, Gearless (EESG)No Gearbox is requiredNo Gearbox is requiredNo direct connection to the grid, Connected through a power converterThe amplitude and frequency of the supplied voltage can be fully controlledThe flux is fully controlled to minimize losses in different operating rangesOperate in a wide range of speed even to a very low speedto a very low speed 23
  24. 24. Advantages of Gearless EESGMechanical, Maintenance & Reliability The full power converter totally  The full power converter totally No Gearbox so high reliability, less noise,  decouples the generator from the  less cost, grid. Hence, grid disturbances have  DFIG have brushes, which need regular  DFIG have brushes which need regular no direct effect on the generator no direct effect on the generator inspection and replacement. They are a  Control potential cause of machine failure and  The converter offers a wide range of  losses. losses d l l speed control even at very low speed  dElectrical & Power Quality therefore a higher energy yield The converter permits flexible full control  The amplitude and frequency of the  of active and reactive power in case of  voltage can be fully controlled by the  normal and disturbed grid conditions. this  converter allows the supply of voltage support  EESG has the opportunities of  pp towards the grid. controlling the flux for a minimized  The same generator suitable for different  loss in different power ranges grid frequencies 50Hz / 60 Hz 24
  25. 25. Disadvantages of Gearless EESGCost High specific mass (kg/kW) and Large outer diameter (high number  of poles) hence Higher cost and more weight. This weight is  partially balanced  by the elimination of the gearbox. partially balanced by the elimination of the gearbox The converter is 100% of rated power. it is more expensive than for  a DFIG. This extra cost is balanced by the elimination of the gearbox More complex structure than SCIGMechanical, Reliability & MaintenanceMechanical, Reliability & Maintenance EESG have brushes, which need regular inspection and  replacement. They are a cause of machine failure and losses. 25
  26. 26. Permanent Magnet Synchronous Generator, Gearless (PMSG)No Gearbox is requiredNo Gearbox is requiredNo direct connection to the grid, Connected through a power converterThe amplitude and frequency of the supplied voltage can be fully controlledNo flux control and no slip rings because of permanent magnetsOperate in a wide range of speed even to a very low speedto a very low speed 26
  27. 27. Advantages of Gearless PMSGMechanical, Maintenance & Reliability No Gearbox and brushes so higher  The converter permits very flexible full  reliability, less noise, less cost, control of the active and reactive power in  improvement in the thermal  p case of normal and disturbed grid  characteristics of the PM machine due  conditions. this allows the supply of voltage  to the absence of the field losses,  support towards the grid.Electrical & Power QualityElectrical & Power Quality Control The full power converter totally  The converter offers a wide range of speed  decouples the generator from the grid.  control even at very low speed therefore a  Hence, grid disturbances have no direct  Hence grid disturbances have no direct higher energy yield higher energy yield effect on the generator The amplitude and frequency of the voltage  The same generator suitable for  can be fully controlled by the converter different grid frequencies 50Hz / 60 Hz / PMSG has the opportunities of controlling  PMSG h th t iti f t lli No additional power supply for the  the flux for a minimized loss in different  magnet field excitation, power ranges 27
  28. 28. Disadvantages of Gearless PMSGCost High cost of PM material and Large outer diameter (high number of  poles), however this is balanced through a lower specific mass  (kg/kW) and the elimination of the gearbox. (kg/kW) and the elimination of the gearbox The converter is 100% of rated power. it is more expensive than for  a DFIG. This extra cost is balanced by the elimination of the gearboxMechanical, Reliability & Maintenance Demagnetization of PM at high temp due to sever loading or short  circuit. Difficulties to handle in manufacture and in transportation, 28
  29. 29. Comparisons of Wind Turbines’ Drive Systems Turbines’ Drive Systems 29
  30. 30. Summary Comparison Summary Comparison Comparison base SCIG DFIG EESG PMSG If in the middleInvestment Cost, size and weight (++) (+) (-) (-) of a desert withMechanical and structure Simplicity (++) (+) (-) (-) hot sandy, andReliability dR li bilit and maintenance t l i t to lower dusty weathermaintenance cost and increase (-) (--) (+) (++) or if offshoreavailability(Gearbox and brushes)Grid support and LVRT (-) (+) (++) (++)Suitability for 50HZ & 60 HZ (-) (-) (+) (+) If the point ofSpeed control to damp mechanical common (-) (+) (++) (++)stresses connection inSpeed control to optimize p paerodynamic efficiency to maximize (-) (+) (++) (++) the middle of aenergy yield complex gridSourcing of material and handling in (+) (+) (-) (--)manufacturing and transportationAnnual Energy Yield due to control ,reliability and less down time (-) (+) (++) (++)Cost of Kwh (Levelized Energy Cost) (-) (+) (++) (++) 30
  31. 31. Wind turbine Top Ten manufacturers and their  Wind turbine Top Ten manufacturers and their generator types Current manufacturers of Direct Drives Turbines 3.6 MW3.53 5 MWCompanies who precognized theDD concept and now Joiningg 31
  32. 32. ConclusionsThe multiple stage geared drive DFIG systems is still The multiple‐stage geared drive DFIG systems is stilldominating the current market,The market shows interest in the direct‐drive systems with a full‐scale power converter. New companies recognized their advantages and already started,Weight, size and initial cost are higher in direct drive systems.Weight size and initial cost are higher in direct drive systemsOverall efficiency, reliability and availability are higher in direct drive systems because of omitting the gearbox,Maintenance cost is higher in geared drive systems specially in ruler area, desert, and offshore also in hot and dusty weather,The cost of KWh is less in direct drive systems,The cost of KWh is less in direct drive systemsIn terms of grid support direct drive wind turbines with a full‐scale power converter may be more effective and less complicated to deal with grid‐related problems, 32
  33. 33. Nacelle Front 33
  34. 34. Nacelle Rear 34
  35. 35. ThankTh k you for your attention f tt ti 35
  36. 36. 36
  37. 37. Gearboxes and Reliability• Gearboxes are one of the most expensive components of the wind turbine system, • The higher ‐ than‐expected failure rates are adding to the cost of wind energy.  • The future uncertainty of gearbox life expectancy is contributing to wind turbine  price escalation.  • Turbine manufacturers add large contingencies to the sales price to cover the  warranty risk due to the possibility of premature gearbox failures. • Owners and operators build contingency funds into the project financing and  income expectations for problems that may show up after the warranty expires. Improving Wind Turbine Gearbox Reliability , Conference Paper NREL/CP‐500‐41548, May 2007• For example, replacing a gearbox in a 1.5‐MW turbine can cost a company more  than $500,000 when you add in the price of a new gearbox, labor, crane rental, and  lost  revenue from turbine downtime. lost revenue from turbine downtime. 3/17/2010 37
  38. 38. Electrical & Power Quality• The ideal voltage source provides a  g p perfectly balanced voltage in the three  phases, a pure sine wave with a constant  frequency and magnitude.  q y g• When these conditions are not met, it is  said that the ‘power quality’ of the grid is  deteriorated. deteriorated• The requirements set by the Transmission  System Operators (TSOs), are being  constantly reviewed and expanded: constantly reviewed and expanded: •Power quality (Constant voltage,  harmonics, flickers) •reactive power control (power factor) •fault ride‐through  (voltage dips and  voltage swells) g ) 38
  39. 39. DFIG Control System 39
  40. 40. EESG & PMSG Control System y 40
  41. 41. TWT 1.65 41
  42. 42. ReferencesH. Polinder,,  Sjoerd W.H. de Haan, M. R. Dubois, Johannes G. Slootweg, “Basic Operation Principles and Electrical Conversion Systems of Wind Turbines“,J. Soens, J. Driesen, R. Belmans, “Interaction between Electrical Grid Phenomena  and the Wind Turbines Behaviour”, PROCEEDINGS OF ISMA 2004,H.Li*Z.Chen, “Overview of different wind generator systems and their comparisons” Published in IET Renewable Power Generation Received on 24th January 2007 Revisedon 23rd August 2007 doi:10 1049/ietRenewable Power Generation Received on 24 January 2007 Revisedon August 2007 doi:10.1049/iet‐rpg:20070044,G Newman, S Perera, V Gosbell and V Smith,  “VOLTAGE SAG RIDE THROUGH IMPROVEMENT , OF MODERN AC DRIVES: REVIEW OF METHODS AND A CASE STUDY”, Integral Energy Power Quality Centre,C. Rahmann, H. J. Haubrich, L. Vargas and M. B. C. Salles,  Investigation of DFIG with Fault Ride Through C. Rahmann, H.‐J. Haubrich, L. Vargas and M. B. C. Salles, “Investigation of DFIG with Fault Ride‐ThroughCapability in Weak Power Systems”, International Conference on Power Systems Transients (IPST2009) in Kyoto, Japan June 3‐6, 2009, , K.S.Sandhu, D.K.Jain , “LVRT of Grid Interfaced Variable Speed Driven PMSG for WECS during Fault Rajveer Mittal”, International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009 1793‐8163,Anca D. Hansen*, Nicolaos A. Cutululis*, Poul Sørensen*,  Florin Iov+, Torben J. Larsen, *Simulation of a flexible wind turbine response to a grid fault”, Risø National Laboratory in cooperation with Aalborg University,Marta Molinas, Bjarne NM t M li Bj Naess, William Gullvik, Tore “Cage Induction Generators for Wind Turbines with  Willi G ll ik T “C I d ti G t f Wi d T bi ithPower Electronics Converters in the Light of the New Grid Codes”, Undeland NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, 42