Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
Loading in …5
×

# Unit5

2,505 views

Published on

• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

### Unit5

1. 1. Objective - To identify angles as vertical, adjacent, complementary and supplementary.<br /> - is a flat surface that<br />extends in all directions .<br />Plane<br />
2. 2. B<br />B<br />A<br />A<br />D<br />C<br />C<br />D<br />Parallel Lines<br /> - Lines in the same plane that<br /> do not intersect.<br />Intersecting Lines<br />
3. 3. Vertical Angles<br />- Formed by intersecting lines.<br />Opposite angles (vertical angles) <br />are always congruent.<br />Adjacent Angles<br /><ul><li>Angels that share a common</li></ul>vertex and side.<br />
4. 4. Complementary Angles<br />- Angles whose<br />sum is 90 .<br />a<br />b<br />Complementary <br />angles may not<br />be adjacent.<br />x<br />y<br />
5. 5. Find the measure of the missing angle.<br />x<br />
6. 6. Find the complement of the angle measures below.<br />1) 20<br />5) 15<br />70<br />75<br />2) 59<br />6) 57<br />31<br />33<br />3) 50<br />7) 43<br />40<br />47<br />4) 62<br />8) 100<br />28<br />Has no <br />complement<br />
7. 7. Supplementary Angles<br />- Angles whose<br />sum is 180 .<br />k<br />t<br />Supplementary <br />angles may not<br />be adjacent.<br />b<br />c<br />
8. 8. Find the measure of the missing angle.<br />y<br />x<br />
9. 9. Find the supplement of the following...<br />1) 18<br />5) 148<br />162<br />32<br />2) 104<br />6) 62<br />76<br />118<br />3) 31<br />7) 159<br />149<br />21<br />1<br />4) 75<br />8) 179<br />105<br />
10. 10. Find the missing angles.<br />A<br />1)<br />2)<br />x<br />C<br />B<br />y<br />E<br />z<br />D<br />
11. 11. Every triangle has angles whose sum equals 180 .<br />b<br />c<br />a<br />x<br />Objective - To use the sum of the angles of a triangle to solve problems.<br />Solve for x.<br />
12. 12. Find the missing angle.<br />1)<br />2)<br />y<br />x<br />
13. 13. Two angles of a triangle are given. Find the third angle.<br />1)<br />3)<br />2)<br />4)<br />
14. 14. Decide whether a triangle can have the given angle <br />measures.<br />1)<br />3)<br />2)<br />4)<br />
15. 15. Objective - To classify triangles.<br />Triangle Names<br />Angle<br />Name<br /> - All angles<br />less than 90 .<br /> - Only One<br />angle equal to 90 .<br />Acute<br />Right<br /> - Only One<br />angle more than 90 .<br />Obtuse<br /> Side<br />Name<br /> - All<br />three sides equal.<br /> - Two<br />sides equal.<br />Equilateral<br />Isosceles<br /> - No <br />equal sides.<br />Scalene<br />
16. 16. 7<br />7<br />11<br />Name each triangle below.<br />1)<br />3)<br />5<br />3<br />4<br />Obtuse<br />Isosceles<br />Right<br />Scalene<br />2)<br />4)<br />3<br />8<br />9<br />Acute<br />Equilateral<br />Obtuse<br />Scalene<br />
17. 17. 7<br />7<br />10<br />10<br />11<br />10<br />Angle-Side Relationships<br />Sides opposite congruent angles are congruent.<br />Angles opposite congruent sides are congruent.<br />
18. 18. Name each triangle below.<br />5)<br />7)<br />12<br />5<br />2<br />5<br />13<br />8<br />Right<br />Scalene<br />Acute<br />Scalene<br />6)<br />8)<br />6<br />6<br />Obtuse<br />Isosceles<br />Acute<br />Isosceles<br />
19. 19. B<br />13<br />C<br />8<br />12<br />D<br />13<br />13<br />13<br />A<br />18<br />5<br />E<br />F<br />10<br />Use the diagram below to name the following.<br />1) Acute Equilateral Triangle<br />3) Acute Isosceles Triangle<br />2) Right Scalene Triangle<br />4) Obtuse Scalene Triangle<br />
20. 20. Objective - To identify and describe the properties of quadrilaterals.<br />Quadrilateral -<br />Four sided figure.<br />Parallelogram -<br />A quadrilateral with two sets of<br />parallel sides.<br />
21. 21. Properties of Parallelograms.<br />Opposite sides have the same length.<br />
22. 22. Properties of Parallelograms.<br />Opposite angels have the same measure.<br />
23. 23. Rectangle -<br />A parallelogram that has four <br />right angles.<br />Square -<br />A rectangle will all sides the same length.<br />
24. 24. Quadrilateral<br />4 sided figure<br />Parallelogram<br />Two sets of parallel<br />sides<br />Rectangle<br />Parallelogram with right <br />angles<br />Square<br />Rectangle with equal<br />sides<br />
25. 25. ,<br />Rectangle<br />Give all the names that apply to the figure below.<br />Circle the most specific name.<br />1)<br />3)<br />6<br />7<br />10<br />7<br />Parallelogram<br />, Quadrilateral<br />Quadrilateral<br />, Parallelogram<br />, Square<br />14<br />3<br />3<br />2)<br />4)<br />6<br />6<br />3<br />3<br />8<br />Quadrilateral<br />, Parallelogram<br />Quadrilateral<br />
26. 26. Find the measures of x an y in each figure.<br />y<br />y<br />1)<br />3)<br />4<br />x<br />9<br />x<br />8<br />9<br />x = 4, y = 8<br />x = 9, y = 9<br />120<br />105<br />75<br />2)<br />4)<br />x<br />10<br />y<br />y<br />x<br />x = 75, y = 105<br />x = 10, y = 120<br />
27. 27. 105<br />105<br />75<br />Find the sum of the measures of the angles and the<br />perimeter.<br />26<br />C<br />B<br />12<br />12<br />75<br />A<br />D<br />26<br />Sum of the angles =<br />Perimeter =<br />