Selective Laser SinteringDeveloped by Carl Deckard for his master’s thesis at the University of Texas, selective lasersint...
SLA :
Technology                                                                                    description:Stereolithograph...
Uncured resin is removed and the model is post-cured to fully cure the resin. Because of thelayered process, the model has...
Sls & sla
Sls & sla
Sls & sla
Upcoming SlideShare
Loading in …5
×

Sls & sla

922 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
922
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
40
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Sls & sla

  1. 1. Selective Laser SinteringDeveloped by Carl Deckard for his master’s thesis at the University of Texas, selective lasersintering was patented in 1989. The technique, shown in Figure 3, uses a laser beam toselectively fuse powdered materials, such as nylon, elastomer, and metal, into a solid object.Parts are built upon a platform which sits just below the surface in a bin of the heat-fusablepowder. A laser traces the pattern of the first layer, sintering it together. The platform is loweredby the height of the next layer and powder is reapplied. This process continues until the part iscomplete. Excess powder in each layer helps to support the part during the build. SLS machinesare produced by DTM of Austin, TX.
  2. 2. SLA :
  3. 3. Technology description:Stereolithography is an additive manufacturing process using a vat of liquid UV-curablephotopolymer "resin" and a UV laser to build parts a layer at a time. On each layer, the laserbeam traces a part cross-section pattern on the surface of the liquid resin. Exposure to the UVlaser light cures, or, solidifies the pattern traced on the resin and adheres it to the layer below.* After a pattern has been traced, the SLAs elevator platform descends by a single layerthickness, typically 0.05 mm to 0.15 mm. Then, a resin-filled blade sweeps across the part crosssection, re-coating it with fresh material. On this new liquid surface, the subsequent layer patternis traced, adhering to the previous layer. A complete 3-D part is formed by this process. Afterbuilding, parts are cleaned of excess resin by immersion in a chemical bath and then cured in aUV oven.* SLA requires the use of support structures to attach the part to the elevator platform and toprevent certain geometry from not only deflecting due to gravity, but to also accurately hold the2D cross sections in place such that they resist lateral pressure from the re-coater blade.Supportsare generated automatically during the preparation of 3D CAD models for use on the SlAmachine, although they may be manipulated manually. Supports must be removed from thefinished product manually; this is not true for all rapid prototyping technologies.Highlights of Stereo Lithography Apparatus* The first Rapid Prototyping technique and still the most widely used.* Inexpensive compared to other techniques.* Uses a light-sensitive liquid polymer.* Requires post-curing since laser is not of high enough power to completely cure.* Long-term curing can lead to warping.* Parts are quite brittle and have a tacky surface.* No milling step so accuracy in z can suffer.* Support structures are typically required.* Process is simple: There are no milling or masking steps required.* Uncured material can be toxic. Ventilation is a must.Introduction of Stereo Lithography Apparatus:Stereo Lithography Apparatus (SLA), the first Rapid Prototyping process, was developed by 3DSystems of Valencia, California, USA, founded in 1986. A vat of photosensitive resin contains avertically-moving platform. The part under construction is supported by the platform that movesdownward by a layer thickness (typically about 0.1 mm / 0.004 inches) for each layer. A laserbeam traces out the shape of each layer and hardens the photosensitive resin.* The Stereo Lithography Apparatus (SLA) System overall arrangementStereo Lithography Apparatus ProcessThe sequence of steps for producing an StereoLithography Apparatus (SLA) layer is shown in the following figures:
  4. 4. Uncured resin is removed and the model is post-cured to fully cure the resin. Because of thelayered process, the model has a surface composed of stair steps. Sanding can remove the stairsteps for a cosmetic finish. Model build orientation is important for stair stepping and build time.In general, orienting the long axis of the model vertically takes longer but has minimal stairsteps. Orienting the long axis horizontally shortens build time but magnifies the stair steps. Foraesthetic purposes, the model can be primed and painted.During fabrication, if extremities of the part become too weak, it may be necessary to usesupports to prop up the model. The supports can be generated by the program that creates theslices, and the supports are only used for fabrication. The following three figures show whysupports are necessary:

×