Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

PhD Topics

1,839 views

Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

PhD Topics

  1. 1. Is it an open door to<br />common parallelization strategy<br />for topological operators on SMP machines ?<br />R. MAHMOUDI – A3SI Lab.<br />1<br />
  2. 2. 2<br />Summary<br />Scientific and technical context<br />PhD Objectives<br />
  3. 3. 3<br />Scientific and technical context (1)<br />Image processingoperators<br />Fourier<br />Transformation<br />Opening<br />Thinning<br />Dynamic <br />redistribution<br />Linear filters<br />Closing<br />Crest restoring<br />Not-linear <br />filters <br />Euclidean <br />Distance<br />Transformation<br />Thresholding<br />Smoothing<br />Attributed<br />Filter<br />Watershed <br />Associated class<br />Topological <br />operators<br />Morphological <br />operators<br />Local <br />operators<br />Point-to-Point <br />operators<br />Global<br />operators<br />R. MAHMOUDI – A3SI Laboratory– 2009 April<br />
  4. 4. 4<br />Scientific and technical context (2)<br />(Associated class) Vs (Parallelizationstrategies)<br />Global<br />operators<br />Topological <br />operators<br />Morphological <br />operators<br />Local <br />operators<br />Point-to-Point <br />operators<br />Sienstra [1]<br />(2002)<br />Wilkinson [2]<br />(2007)<br />Meijster [3]<br />[1] F. J. Seinstra, D. Koelma, and J. M. Geusebroek, “A software architecture for user transparent parallel image processing”.<br />[2] M.H.F. Wilkinson, H. Gao, W.H. Hesselink, “Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines”.<br />[3] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink, “A general algorithm for computing distance transforms in linear time” .<br />R. MAHMOUDI – A3SI Laboratory– 2009 April<br />
  5. 5. 5<br />PhD Objectives (1)<br />Topological operators<br />Thinning operator [1]<br />common<br />parallelization<br />strategy<br />Crest restoring [1]<br />2D and 3D smoothing [2]<br />Watershed based on w-thinning [3]<br />Watershed based on graph [4]<br />Homotopic kernel transformation [5]<br />Leveling kernel transformation [5]<br />[1] M. Couprie, F. N. Bezerra, and G. Bertrand, “Topological operators for grayscale image processing”, <br />[2] M. Couprie, and G. Bertrand, “Topology preserving alternating sequential filter for smoothing 2D and 3D objects”.<br />[3] G. Bertrand, “On Topological Watersheds”.  <br />[4] J. Cousty, M. Couprie, L. Najman and G. Betrand “Weighted fusion graphs: Merging properties and watersheds”.<br />[5] G. Bertrand, J. C. Everat, and M. Couprie, "Image segmentation through operators based on topology“ <br />
  6. 6. 6<br />PhD Objectives (2)<br />Main Architectural Classes <br />SISD machines<br />SIMD machines<br />MISD machines<br />MIMD Machine :<br />(Execute several instruction streams in parallel on different data)<br />Shared Memory Machine<br />Distributed <br />Memory <br />System<br />CPU1<br />CPU2<br />CPU3<br />CPUn<br />Random Access Memory <br />
  7. 7. 7<br />PhD Objectives (3)<br />Needs<br />Common parallelization strategy of topological operators on multi-core multithread architecture (MIMD Machines – Shared Memory System)?<br />Main Objectives<br />Unifyingparallelizationmethod of topologicaloperators class (Algorithmiclevel)<br />Implementation Methodology and optimization techniques on multi-core multithread <br /> architecture (Architecture level).<br />
  8. 8. More details<br />www.mramzi.net<br />8<br />
  9. 9. 9<br />

×