Successfully reported this slideshow.
Upcoming SlideShare
×

# Dynamic analysis of dc machine

2,902 views

Published on

Hi, this is my third material

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### Dynamic analysis of dc machine

1. 1. PHYSICAL STRUCTURE 9/1/201311:48AM 1 PRB/SCE/Dept.ofEEE
2. 2. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 2 PE 9211 Analysis of Electrical Machines
3. 3. Dynamic Characteristics of Permanent Magnet DC Motor Modes of Dynamic operation 1. Starting from stall 2. Changes in load torque Condition: The machine supplied from a constant β voltage source 9/1/201311:48AM 3 PRB/SCE/Dept.ofEEE
4. 4. Mathematical Model of a PMDC Motor: 9/1/201311:48AM 4 PRB/SCE/Dept.ofEEE
5. 5. This motor consists of two first order differential equation and two algebraic equation Armature current equation, 9/1/201311:48AM 5 PRB/SCE/Dept.ofEEE
6. 6. Speed equation, 9/1/201311:48AM 6 PRB/SCE/Dept.ofEEE
7. 7. 9/1/201311:48AM 7 PRB/SCE/Dept.ofEEE
8. 8. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 8 Simulink Model of PMDC Motor Motor Parameters
9. 9. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 9 Solving armature current equation
10. 10. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 10 Solving Speed equation
11. 11. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 11
12. 12. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 12 Dynamic performance during starting
13. 13. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 13
14. 14. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 14 Dynamic Characteristics of DC Shunt Motor
15. 15. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 15
16. 16. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 16 Simulink Model of DC Shunt Motor: Fig shows the Simulink model of DC Shunt Motor. It is constructed using subsystems for solving each differential equations (i.e.) armature current, field current and torque equation.
17. 17. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 17
18. 18. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 18
19. 19. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 19
20. 20. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 20
21. 21. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 21 Time domain block diagrams and state equations Shunt connected dc machine W.K.T π π = π π π π + π³ π¨π¨ ππ π ππ + π³ π¨π­ π π π π β β ββ π π π = π π πΉ π + π³ π­π­ ππ π ππ β β ββ π π» π = π» π³ + π± ππ π ππ + π© π π π β ββ β π
22. 22. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 22 Equations (1),(2) and (3) can be written in terms of its time constants π π = π π π + π³ π¨π¨ π π π ππ π π + π³ π¨π­ π π π π π π = π π π + π π π π π + π³ π¨π­ π π π πββββββ π π―πππ, π βΆ π ππ π π = πΉ π π + π³ π­π­ πΉ π π π π π π = πΉ π π + π π π π πβββββββ(5) π» π β π» π³ = ( π© π + π± π) π π β β β β π
23. 23. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 23 π π βΆ Armature time constant π π βΆ Field time constant πΊππππππ πππ πππππππππ π , π πππ π πππ π π , π π, πππ π π ππππππ π π = π π π π π π + π π π β π³ π¨π­ π π π π β β ββ π π π = π πΉ π π π π + π π π β ββ β π π π = π π±π + π© π π» π β π» π³ ββ β β π
24. 24. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 24 Time domain block diagram of a shunt connected dc machine
25. 25. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 25 πΊππππππ πππ πππππππππ π , π πππ π πππ ππ π ππ , ππ π ππ πππ ππ π ππ ππππππ From (1) ππ π ππ = β π π π³ π¨π¨ π π β π³ π¨π­ π³ π¨π¨ π π π π + π π³ π¨π¨ π πβ ππ From (2) ππ π ππ = β πΉ π π³ π­π­ π π + π π³ π­π­ π πβ ππ From (3) ππ π ππ = β π© π π± π π + π³ π¨π­ π± π π π π β π π± π» π³ β β(ππ) State equation of shunt dc machine
26. 26. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 26 π π π π π ππ = βπΉ π π³ π­π­ π π π βπ π π³ π¨π¨ π π π βπ© π π± π π π π ππ + π βπ³ π¨π­ ππ π³ π¨π¨ π³ π¨π­ π π π π π± + π π³ π­π­ π π π π π³ π¨π¨ π π π βπ π± π π π π π» π³ State equations in matrix form or vector matrix form Note: The second term on the right side contains the product of state variables causing the system to be nonlinear.
27. 27. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 27 Permanent Magnet dc Machine ππ ππ ππππππππππ π³π¨π­ ππ ππ ππππππππ ππ ππ ππ ππ ππππππππππ ππ Strength of the magnet Reluctance of the iron No. of turns in the armature winding
28. 28. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 28 W.K.T Above eqns. (1) and (2) can be written in terms of its time constants
29. 29. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 29Time domain block diagram of a permanent magnet DC machine
30. 30. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 30 State Equation of a permanent magnet DC machine From (1) From (2)
31. 31. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 31 The form in which the state equations are expressed in above eqn. is called the fundamental form. OR
32. 32. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 32 Advantages to using the state space representation compared with other methods. 1.The ability to easily handle systems with multiple inputs and outputs; 2.The system model includes the internal state variables as well as the output variable; 3.The model directly provides a time-domain solution, the matrix/vector modeling is very efficient from a computational standpoint for computer implementation
33. 33. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 33
34. 34. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 34
35. 35. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 35 404349
36. 36. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 36
37. 37. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 37
38. 38. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 38
39. 39. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 39
40. 40. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 40
41. 41. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 41 34
42. 42. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 42
43. 43. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 43
44. 44. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 44 34
45. 45. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 45
46. 46. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 46
47. 47. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 47
48. 48. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 48
49. 49. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 49
50. 50. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 50 34
51. 51. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 51
52. 52. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 52