Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Dynamic analysis of dc machine

2,902 views

Published on

Hi, this is my third material

Published in: Education, Technology, Business

Dynamic analysis of dc machine

  1. 1. PHYSICAL STRUCTURE 9/1/201311:48AM 1 PRB/SCE/Dept.ofEEE
  2. 2. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 2 PE 9211 Analysis of Electrical Machines
  3. 3. Dynamic Characteristics of Permanent Magnet DC Motor Modes of Dynamic operation 1. Starting from stall 2. Changes in load torque Condition: The machine supplied from a constant – voltage source 9/1/201311:48AM 3 PRB/SCE/Dept.ofEEE
  4. 4. Mathematical Model of a PMDC Motor: 9/1/201311:48AM 4 PRB/SCE/Dept.ofEEE
  5. 5. This motor consists of two first order differential equation and two algebraic equation Armature current equation, 9/1/201311:48AM 5 PRB/SCE/Dept.ofEEE
  6. 6. Speed equation, 9/1/201311:48AM 6 PRB/SCE/Dept.ofEEE
  7. 7. 9/1/201311:48AM 7 PRB/SCE/Dept.ofEEE
  8. 8. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 8 Simulink Model of PMDC Motor Motor Parameters
  9. 9. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 9 Solving armature current equation
  10. 10. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 10 Solving Speed equation
  11. 11. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 11
  12. 12. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 12 Dynamic performance during starting
  13. 13. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 13
  14. 14. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 14 Dynamic Characteristics of DC Shunt Motor
  15. 15. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 15
  16. 16. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 16 Simulink Model of DC Shunt Motor: Fig shows the Simulink model of DC Shunt Motor. It is constructed using subsystems for solving each differential equations (i.e.) armature current, field current and torque equation.
  17. 17. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 17
  18. 18. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 18
  19. 19. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 19
  20. 20. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 20
  21. 21. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 21 Time domain block diagrams and state equations Shunt connected dc machine W.K.T 𝒗 𝒂 = π’Š 𝒂 𝒓 𝒂 + 𝑳 𝑨𝑨 π’…π’Š 𝒂 𝒅𝒕 + 𝑳 𝑨𝑭 𝝎 𝒓 π’Š 𝒇 βˆ’ βˆ’ βˆ’βˆ’ 𝟏 𝒗 𝒇 = π’Š 𝒇 𝑹 𝒇 + 𝑳 𝑭𝑭 π’…π’Š 𝒇 𝒅𝒕 βˆ’ βˆ’ βˆ’βˆ’ 𝟐 𝑻 𝒆 = 𝑻 𝑳 + 𝑱 π’…πŽ 𝒓 𝒅𝒕 + 𝑩 π’Ž 𝝎 𝒓 βˆ’ βˆ’βˆ’ βˆ’ πŸ‘
  22. 22. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 22 Equations (1),(2) and (3) can be written in terms of its time constants 𝒗 𝒂 = 𝒓 𝒂 𝟏 + 𝑳 𝑨𝑨 𝒓 𝒂 𝒅 𝒅𝒕 π’Š 𝒂 + 𝑳 𝑨𝑭 𝝎 𝒓 π’Š 𝒇 𝒗 𝒂 = 𝒓 𝒂 𝟏 + 𝝉 𝒂 𝝆 π’Š 𝒂 + 𝑳 𝑨𝑭 𝝎 𝒓 π’Š π’‡βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’ πŸ’ 𝑯𝒆𝒓𝒆, 𝝆 ⟢ 𝒅 𝒅𝒕 𝒗 𝒇 = 𝑹 𝒇 𝟏 + 𝑳 𝑭𝑭 𝑹 𝒇 𝝆 π’Š 𝒇 𝒗 𝒇 = 𝑹 𝒇 𝟏 + 𝝉 𝒇 𝝆 π’Š π’‡βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’(5) 𝑻 𝒆 βˆ’ 𝑻 𝑳 = ( 𝑩 π’Ž + 𝑱 𝝆) 𝝎 𝒓 βˆ’ βˆ’ βˆ’ βˆ’ πŸ”
  23. 23. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 23 𝝉 𝒂 ⟢ Armature time constant 𝝉 𝒇 ⟢ Field time constant π‘Ίπ’π’π’—π’Šπ’π’ˆ 𝒕𝒉𝒆 π’†π’’π’–π’‚π’•π’Šπ’π’π’” πŸ’ , πŸ“ 𝒂𝒏𝒅 πŸ” 𝒇𝒐𝒓 π’Š 𝒂 , π’Š 𝒇, 𝒂𝒏𝒅 𝝎 𝒓 π’šπ’Šπ’†π’π’…π’” π’Š 𝒂 = 𝟏 𝒓 𝒂 𝝉 𝒂 𝝆 + 𝟏 𝒗 𝒂 βˆ’ 𝑳 𝑨𝑭 𝝎 𝒓 π’Š 𝒇 βˆ’ βˆ’ βˆ’βˆ’ πŸ• π’Š 𝒇 = 𝟏 𝑹 𝒇 𝝉 𝒇 𝝆 + 𝟏 𝒗 𝒇 βˆ’ βˆ’βˆ’ βˆ’ πŸ– 𝝎 𝒓 = 𝟏 𝑱𝝆 + 𝑩 π’Ž 𝑻 𝒆 βˆ’ 𝑻 𝑳 βˆ’βˆ’ βˆ’ βˆ’ πŸ—
  24. 24. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 24 Time domain block diagram of a shunt connected dc machine
  25. 25. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 25 π‘Ίπ’π’π’—π’Šπ’π’ˆ 𝒕𝒉𝒆 π’†π’’π’–π’‚π’•π’Šπ’π’π’” 𝟏 , 𝟐 𝒂𝒏𝒅 πŸ‘ 𝒇𝒐𝒓 π’…π’Š 𝒂 𝒅𝒕 , π’…π’Š 𝒇 𝒅𝒕 𝒂𝒏𝒅 π’…πŽ 𝒓 𝒅𝒕 π’šπ’Šπ’†π’π’…π’” From (1) π’…π’Š 𝒂 𝒅𝒕 = βˆ’ 𝒓 𝒂 𝑳 𝑨𝑨 π’Š 𝒂 βˆ’ 𝑳 𝑨𝑭 𝑳 𝑨𝑨 π’Š 𝒇 𝝎 𝒓 + 𝟏 𝑳 𝑨𝑨 𝒗 𝒂— 𝟏𝟎 From (2) π’…π’Š 𝒇 𝒅𝒕 = βˆ’ 𝑹 𝒇 𝑳 𝑭𝑭 π’Š 𝒂 + 𝟏 𝑳 𝑭𝑭 𝒗 𝒇— 𝟏𝟏 From (3) π’…πŽ 𝒓 𝒅𝒕 = βˆ’ 𝑩 π’Ž 𝑱 𝝎 𝒓 + 𝑳 𝑨𝑭 𝑱 π’Š 𝒇 π’Š 𝒂 βˆ’ 𝟏 𝑱 𝑻 𝑳 βˆ’ βˆ’(𝟏𝟐) State equation of shunt dc machine
  26. 26. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 26 𝜌 π’Š 𝒇 π’Š 𝒂 πŽπ’“ = βˆ’π‘Ή 𝒇 𝑳 𝑭𝑭 𝟎 𝟎 𝟎 βˆ’π’“ 𝒂 𝑳 𝑨𝑨 𝟎 𝟎 𝟎 βˆ’π‘© π’Ž 𝑱 π’Š 𝒇 π’Š 𝒂 πŽπ’“ + 𝟎 βˆ’π‘³ 𝑨𝑭 πŽπ’“ 𝑳 𝑨𝑨 𝑳 𝑨𝑭 π’Š 𝒇 π’Š 𝒂 𝑱 + 𝟏 𝑳 𝑭𝑭 𝟎 𝟎 𝟎 𝟏 𝑳 𝑨𝑨 𝟎 𝟎 𝟎 βˆ’πŸ 𝑱 𝒗 𝒇 𝒗 𝒂 𝑻 𝑳 State equations in matrix form or vector matrix form Note: The second term on the right side contains the product of state variables causing the system to be nonlinear.
  27. 27. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 27 Permanent Magnet dc Machine 𝒗𝒇 π’Šπ’” π’†π’π’Šπ’Žπ’Šπ’π’‚π’•π’†π’… 𝑳𝑨𝑭 π’Šπ’‡ π’Šπ’” 𝒓𝒆𝒑𝒍𝒂𝒄𝒆𝒅 π’ƒπ’š π’Œπ’— π’Œπ’— π’Šπ’” π’…π’†π’•π’†π’“π’Žπ’Šπ’π’†π’… π’ƒπ’š Strength of the magnet Reluctance of the iron No. of turns in the armature winding
  28. 28. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 28 W.K.T Above eqns. (1) and (2) can be written in terms of its time constants
  29. 29. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 29Time domain block diagram of a permanent magnet DC machine
  30. 30. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 30 State Equation of a permanent magnet DC machine From (1) From (2)
  31. 31. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 31 The form in which the state equations are expressed in above eqn. is called the fundamental form. OR
  32. 32. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 32 Advantages to using the state space representation compared with other methods. 1.The ability to easily handle systems with multiple inputs and outputs; 2.The system model includes the internal state variables as well as the output variable; 3.The model directly provides a time-domain solution, the matrix/vector modeling is very efficient from a computational standpoint for computer implementation
  33. 33. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 33
  34. 34. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 34
  35. 35. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 35 404349
  36. 36. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 36
  37. 37. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 37
  38. 38. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 38
  39. 39. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 39
  40. 40. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 40
  41. 41. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 41 34
  42. 42. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 42
  43. 43. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 43
  44. 44. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 44 34
  45. 45. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 45
  46. 46. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 46
  47. 47. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 47
  48. 48. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 48
  49. 49. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 49
  50. 50. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 50 34
  51. 51. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 51
  52. 52. 9/1/201311:48AMPRB/SCE/Dept.ofEEE 52

Γ—