Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
DEPARTMENT OF ENTOMOLOGYDEPARTMENT OF ENTOMOLOGY
CREDIT SEMINAR
ON
CREDIT SEMINAR
ON
RECENT ADVANCES IN MICROBIAL PESTICID...
Microbial pesticides
 Microbial pesticides are products based on living
micro-organisms which are pathogenic to targeted
...
MICROBIAL PESTICIDES PRODUCTS
WORLDWIDE
Woo, et al., 2010.
Others (3%)
Status of production of microbial pesticides
used against insect pests in India
Agent 2009-2010
HaNPV 15639 (L) 7958 (L) _...
Advantages of microbial pesticides
• Microbial pesticides are difficult for insects
to develop resistance
• Safe to natura...
Limitations of microbial pesticides
Slow effect
Lack of persistence and narrow activity
Rapidly degraded by UV light
N...
TYPES
MICROBIAL PESTICIDES
Bacteria FungiVirus NematodeProtozoa
Bacterial insecticides
•Spore forming
•Rod-shaped
• Isolated from soil samples
•Stomach poisons
•Genus Bacillus
CLASSIFICATION OF ENTOMOPATHOGENIC
BACTERIA
ENTOMOPATHOGENIC BACTERIA
Spore producers
Non-spore producer
e.g. Pseudomonus ...
Some properties of the insecticidal toxins
from
various strains of B. thuringiensis
Strain/subsp. Protein
size
cry Target ...
CRY Proteins
• Crystalline protein and are toxic
ingredient
• Each Bt species/strain produces a
unique set of CRY proteins...
Mode of
action
B. thuringienis parasporal crystal
composed of Cry1 protoxin protein.
Bt strain Trade name Uses
Bt var. aizawai Florback, Centari Diamondback
moth
Bt var. galleriae Certan Wax moth larvae
in h...
Effect of Bt liquid formulations against Helicoverpa
armigera in pigeon pea
treatments
No. of H. armigera larvae / plant o...
Effect of different Bt liquid formulations on pod, grain
damage and yield of pigeon pea
Treatments Pod damage (%) Seed dam...
Virus
• Set of one or more nucleic acid template
molecules, normally encased in a protective
coat of protein or lipoprotei...
Characteristics of Viruses found in
insectsVirusVirus NucleicNucleic
acidacid
VirusVirus
particleparticle
Inclusion bodyIn...
• Approx. 60 per cent of 1200
known insect viruses
belongs to family
Baculoviridae
• Baculovirus infection
described in 70...
Mode of Action
Efficacy of Baculoviruses against
insect pests
Virus Dose Targeted
Pest
Mortality (%) Reference
HzNPV 100-250
LE/ha
Helico...
Effect of microbial insecticides on the larval population of
H. armigera in gram
Larval population per meter row
Treatment...
Effect of microbial insecticides on the pod an
yield characters in gramickpea
Treatment Dose per ha. Pod damage(%) Yield (...
Metarhizium anisopliae
Beauveria bassiana infection of
Clover Worm
Beauveria bassiana infection of
worm within woody subst...
Entomopathogenic fungi used for the
control of pests
FungusFungus ProductProduct TargetTarget
Verticillium lecanii Mycotol...
Entomopathogenic fungi in Insect ControlEntomopathogenic fungi in Insect Control
Tea Mites
Rice bugs
Helicoverpa
Beauveria...
Mode of action of Entomopathogenic
fungi
Selected metabolites of important
Entomopathogenic fungi
Pathogen Metabolite
Metarhizium anisopliae Destruxins (>27 types)...
Efficacy of Fungi against pests
FungusFungus ConcentrationConcentration
(conidia/ ml)(conidia/ ml)
Pests (Crop)Pests (Crop...
Population density of Diamondback mothlarvae,
Plutella xylostella on cauliflower
Treatment Average number of DBM per m2
B....
Field efficacy of certain M. anisopliae and B. bassiana
isolates against DBM larvae, Plutella xylostella
Treatment concent...
Effect of M. anisopliae and B. bassiana on ratio of commodity
cauliflower and cauliflower yield
Treatment Ratio of
commodi...
Protozoans
• More than 100 species are pathogenic to insects
• Chronic nature of infection so limited efficiency
• Few are...
Protozoans considered for control of
insect pests
Parasite Host
Nosema acridophagous, N.
cuneatum, N. locustae
Grasshopper...
Protozoan insecticides
Nosema locustae
Specific to grasshoppers and Mormon cricket
Slow acting
Most appropriate for lon...
 Entomopathogenic nematodes are a group of
nematodes causing death to insects
 The infective juveniles of entomopathogen...
Infective juvenile
Host finding
Infection
Release of bacteria
Host killed
Development & reproduction
of nematodeInfective ...
Effect of entomopathogenic nematodes on flea beetle
at different temperature
LC50
Nematode species 150
C 200
C 250
C
S. fe...
Commercial products of Entomopathogenic
nematode available in international market
Nematode species Product formulation Co...
Desirable characteristics required in microbial
pesticides
Characteristic Bacteria Fungi Viruses Protozoa Nematode
Time to...
 The microbial pesticide are potential bio-agents amenable for
mass production, handling and application on a large scale...
Recent advances in microbial pesticide
Upcoming SlideShare
Loading in …5
×

Recent advances in microbial pesticide

1,449 views

Published on

No

Published in: Education
  • Be the first to comment

Recent advances in microbial pesticide

  1. 1. DEPARTMENT OF ENTOMOLOGYDEPARTMENT OF ENTOMOLOGY CREDIT SEMINAR ON CREDIT SEMINAR ON RECENT ADVANCES IN MICROBIAL PESTICIDE IN INSECT PEST MANAGEMENT Presented By:- RAM KUMAR M.Sc. (Ag.) Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar
  2. 2. Microbial pesticides  Microbial pesticides are products based on living micro-organisms which are pathogenic to targeted pest  Consist of a microorganism as the active ingredient (e.g., bacteria, fungi, virus, protozoa, and nematode)  The term entomopathogenic has a Greek origin entomon, refers to insect, and pathogenic, which denotes causing disease  About 3000 microbes reported to cause diseases in insects
  3. 3. MICROBIAL PESTICIDES PRODUCTS WORLDWIDE Woo, et al., 2010. Others (3%)
  4. 4. Status of production of microbial pesticides used against insect pests in India Agent 2009-2010 HaNPV 15639 (L) 7958 (L) _ 12522 SlNPV 3438 (L) 2387 (L) _ 1673 Bacillus thuringenesis 52 7.0 5.0 _ Beauveria bassiana 141 82 244 19478 Metarhizium anisopliae 29 35 20 4730 Verticillium lecanii 45 30 190 10242 Paecilomyces lilacinus 50 3.0 14 26436 P. fumosoroseus _ _ 2.0 4000 Solid formulations(T) Liquid formulations(L) Ramanujam et al. (2014). Proc. Indian Natn. Sci. Acad., 80(2): 455-471. 2005-06 2006-07 (T/L) (T/L)
  5. 5. Advantages of microbial pesticides • Microbial pesticides are difficult for insects to develop resistance • Safe to natural enemies and higher organisms • Biodegradable • Cheaper, renewable and can be handled safely • Most are compatible with insecticides and other agents • Residue free
  6. 6. Limitations of microbial pesticides Slow effect Lack of persistence and narrow activity Rapidly degraded by UV light Not easily available everywhere Poor water solubility and are generally not systemic in nature Poor storage characteristics
  7. 7. TYPES MICROBIAL PESTICIDES Bacteria FungiVirus NematodeProtozoa
  8. 8. Bacterial insecticides •Spore forming •Rod-shaped • Isolated from soil samples •Stomach poisons •Genus Bacillus
  9. 9. CLASSIFICATION OF ENTOMOPATHOGENIC BACTERIA ENTOMOPATHOGENIC BACTERIA Spore producers Non-spore producer e.g. Pseudomonus spp. Obligate spore producers e.g. Bacillus popillae Facultative spore producers Crystelliferous e.g. Bacillus thuringiensis Non crystelliferous e.g. Bacillus cereus
  10. 10. Some properties of the insecticidal toxins from various strains of B. thuringiensis Strain/subsp. Protein size cry Target Insects berliner 130-140 kDa CryI (Cry1Aa) Lepidoptera kurstaki KTP, HD1 130-140 kDa CryI (Cry1Ab) Lepidoptera entomocidus 6.01 130-140 kDa CryI (Cry1Ba) Lepidoptera aizawai 7.29 130-140 kDa CryI (Cry1Ca) Lepidoptera aizawai IC 1 135 kDa CryII (Cry1Da) Lepidoptera, Diptera kurstaki HD-1 71 kDa CryII (Cry2Ab) Lepidoptera, Diptera tenebrionis (sd) 66-73 kDa CryIII (Cry3Aa) Coleoptera morrisoni PG14 125-145 kDa CryIV (Cry4Aa) Diptera israelensis 68 kDa CryIV (Cry4Ba) Diptera
  11. 11. CRY Proteins • Crystalline protein and are toxic ingredient • Each Bt species/strain produces a unique set of CRY proteins • Each CRY protein has unique activity • CRY proteins are usually designated with a series of numbers and letters:- Cry1a, Cry2
  12. 12. Mode of action
  13. 13. B. thuringienis parasporal crystal composed of Cry1 protoxin protein.
  14. 14. Bt strain Trade name Uses Bt var. aizawai Florback, Centari Diamondback moth Bt var. galleriae Certan Wax moth larvae in honey combs Bt var. israelensis Bactimos, Bactis, Thurimos, Vectobac Larvae of mosqitoes and balckflies Bt var. kurstaki Bt, Biobit, Dipel, Delfin, Javelin Lepidopterous larvae Bt var. sandiego Diterra, M- one plus Beetles and weevils Bt var. thuringenesis Muscabac, Thuricide Flies, Lepidopterous larvae Bt based commercially available pesticides in India
  15. 15. Effect of Bt liquid formulations against Helicoverpa armigera in pigeon pea treatments No. of H. armigera larvae / plant on pigeon pea PDBC Bt1 @1% 0.73 0.47 0.40 3.60 2.20 2.07 1.28 PDBC Bt1 @ 2% 0.80 0.43 0.33 3.67 2.07 1.60 1.11 NBAII BtG4 @ 1% 0.67 0.40 0.33 3.53 2.47 1.53 1.18 NBAII BtG4 @ 2% 0.73 0.37 0.27 4.00 1.93 1.47 1.01 Beauveria bassiana @ 1.5 Kg/ha 0.87 0.60 0.33 3.73 2.80 2.00 1.43 Beauveria bassiana @ 2.0 Kg/ha 0.73 0.67 0.40 3.67 2.20 1.67 1.23 Bt k @ 0.2% 0.93 0.47 0.33 3.80 2.53 1.80 1.28 Chlorpyriphos 20EC @ 0.25% 1.07 0.33 0.17 4.07 1.40 1.3 0.81 Untreated control 0.80 0.87 0.93 3.93 4.07 4.33 2.55 Kumar, et al., (2016). J. Appl. Biol. Biotech., 4 (1): 39-42. I Spray II Spray Pre count 3 DAS 7 DAS Pre count 3 DAS 7 DAS Mean
  16. 16. Effect of different Bt liquid formulations on pod, grain damage and yield of pigeon pea Treatments Pod damage (%) Seed damage (%) Yield (q/ha) PDBC Bt1 @1% 7.74 5.54 13.5 PDBC Bt1 @ 2% 7.5 5.34 14.1 NBAII BtG4 @ 1% 6.29 4.77 14.2 NBAII BtG4 @ 2% 5.30 3.91 15.3 Beauveria bassiana @ 1.5 Kg/ha 8.07 5.77 12.1 Beauveria bassiana @ 2.0 Kg/ha 6.75 4.99 12.7 Bt k @ 0.2% 7.09 5.4 13.7 Chlorpyriphos 20EC @ 0.25% 5.07 3.24 16.9 Untreated control 12.94 8.78 9.2 Kumar, et al., (2016). Evaluation of liquid formulations of Bt against gram pod borer, Helicoverpa armigera (Hubner) and spotted pod borer, Maruca vitrata (Geyer) in pigeon pea. Journal of Applied Biology & Biotechnology, 4 (1): 39-42.
  17. 17. Virus • Set of one or more nucleic acid template molecules, normally encased in a protective coat of protein or lipoprotein that is able to organize its own replication only within suitable host cells NPV infected larva Gypsy moth larva killed by
  18. 18. Characteristics of Viruses found in insectsVirusVirus NucleicNucleic acidacid VirusVirus particleparticle Inclusion bodyInclusion body shapeshape Subgroups andSubgroups and common namescommon names Ascoviridae Ds DNA Allantoid None - Baculoviridae Ds DNA Bacilliform Polyhedral NPV Cigar- shaped GV Calciviridae ss RNA Isometric None - Iridoviridae ss DNA Isometric None Iridscent Nodaviridae ss RNA Isometric None - Parvoviridae ss DNA Isometric None - Picornaviridae ss RNA Isometric None - Polydnaviridae ssDNA Ovoid None - Poxviridae Ds DNA Ovoid or brick shaped Spheroid Entomopox viruses Reoviridae Ds DNA Isometric Polyhedral Cytoplasmic polyhedrosis Rabhdoviridae ss RNA Helical None -
  19. 19. • Approx. 60 per cent of 1200 known insect viruses belongs to family Baculoviridae • Baculovirus infection described in 700 species of invertebrates OrderOrder SpeciesSpecies LepidopteraLepidoptera 455455 HymenopteraHymenoptera 3131 DipteraDiptera 2727 ColeopteraColeoptera 55 NeuropteraNeuroptera 22 TrichopteraTrichoptera 11 ThysanopteraThysanoptera 11 SiphanopteraSiphanoptera 11 Helicoverpa armigera infected with HaNPV
  20. 20. Mode of Action
  21. 21. Efficacy of Baculoviruses against insect pests Virus Dose Targeted Pest Mortality (%) Reference HzNPV 100-250 LE/ha Helicoverpa zea 90- 96 Dhaliwal et al., 2007 SlNPV 375 LE/ha Spodoptera litura 95.00 Arora et al., 2003 HaNPV 1 X 108 OB’s Helicoverpa armigera 90.60 Snegapriya and Manjula, 2008 AgNPV 50 LE/ha Anticarsia gemmatalis 80.00 Dhaliwal et al., 2007 HaNPV - Helicoverpa armigera Effective control Hu et al., 2003 SfNPV 2.5X 1011 OB’s Spodoptera frugiperda Effective control Dhaliwal et al., 2007
  22. 22. Effect of microbial insecticides on the larval population of H. armigera in gram Larval population per meter row Treatment Dose/ha 1DBISP 3DAISP 7DAISP 1 DBIISP 3DAIISP 7DAIISP Bt var Kenyae 1500g 14.00 7.00 8.66 2.66 3.00 1.00 Delfin (53000SU/mg) 1500g 14.66 9.33 6.33 4.00 4.66 1.00 Dipel DF (2.3107 conidia/ml) 5000ml 16.33 8.00 4.66 2.66 3.66 1.00 Biolep (1600IU/mg) 1500g 14.33 8.00 6.66 3.66 3.33 1.00 Halt(55000SU/mg 2000g 12.33 9.33 6.00 3.66 3.33 2.00 Basina 5000g 13.33 7.00 6.00 4.66 4.33 2.66 HaNPV 250 LE 13.33 8.00 8.66 3.66 4.00 1.66 Endosulfan 35 EC 1000 ml 15.00 7.66 7.66 4.00 4.33 1.33 Untreated check - 17.33 15.00 11.00 8.00 5.66 5.00 Gowda S.D.K and Yelshetty, S. (2005). Evaluation of Microbial Agents against Gram Pod Borer, Helicoverpa armigera (Hubner). Karnataka J. Agric. Sci.,18(1): 44-46.
  23. 23. Effect of microbial insecticides on the pod an yield characters in gramickpea Treatment Dose per ha. Pod damage(%) Yield (q/ha) Bt var Kenyae 1500g 13.73 9.40 Delfin (53000SU/mg) 1500g 12.38 8.52 Dipel DF (2.3107 conidia/ml) 500ml 13.23 9.18 Biolep (1600IU/mg) 1500g 12.90 8.43 Halt (55000SU/mg) 2000g 14.53 8.70 Basina 5000g 13.43 8.36 HaNPV (6×109 POB/LE) 250LE 11.63 (min.) 10.26 (max.) Endosulfan 35 EC 35EC 13.38 8.16 Untreated check - 20.30 5.83 Gowda S.D.K and Yelshetty, S. (2005). Evaluation of Microbial Agents against Gram Pod Borer, Helicoverpa armigera (Hubner). Karnataka J. Agric. Sci.,18(1): 44-46.
  24. 24. Metarhizium anisopliae Beauveria bassiana infection of Clover Worm Beauveria bassiana infection of worm within woody substrate Fungi  An entomopathogenic fungus is a fungus that act as a parasite of insects and kills or disables them seriously
  25. 25. Entomopathogenic fungi used for the control of pests FungusFungus ProductProduct TargetTarget Verticillium lecanii Mycotol, Vertalec Whitefly, thrips and aphids Metarhizium anisopliae Meta guard Termites Metarhizium anisopliae Biogreen Locusts Metarhizium anisopliae Bio-Path Cockroaches Metarhizium anisopliae Bio-Blast Termites Metarhizium anisopliae Cobicant Sugarcane spittle bug Metarhizium anisopliae Bio-Cane Cane grubs Metarhizium anisopliae Green Muscle Locusts, grasshoppers Beauveria bassiana Conidia Coffee berry borer Beauveria bassiana Cornguard European corn borer Beauveria bassiana Naturalis- L Cotton pests Beauveria bassiana Mycotrol GH Locusts, grasshoppers Beauveria bassiana Mycotrol WH and Botanigard Whitefly, aphids, thrips Paecilomyces fumosoroseus PFR- 97, Pae- Sin Whitefly
  26. 26. Entomopathogenic fungi in Insect ControlEntomopathogenic fungi in Insect Control Tea Mites Rice bugs Helicoverpa Beauveria infected Helicoverpa Paecilomyces infected tea mites Metarhizium infected rice bugs
  27. 27. Mode of action of Entomopathogenic fungi
  28. 28. Selected metabolites of important Entomopathogenic fungi Pathogen Metabolite Metarhizium anisopliae Destruxins (>27 types), cytochalasin Beauveria bassiana Bassianin, beauvericin, bassianolide, tenellin Beauveria brogniartii Oosporein Paecilomyces fumosoroseus Beauvericin, beauverolies, pyridine-2,6-dicarboxylic acid Verticillium lecanii Dipcolonic acid, hydroxycarboxylic acid, vertilecannins, bassianolide Tolypocladium spp. Cyclosporin, efrapeptins (5 types) Hirustella thompsonii Hirsutellin A, hirsutellin B, phomalatone
  29. 29. Efficacy of Fungi against pests FungusFungus ConcentrationConcentration (conidia/ ml)(conidia/ ml) Pests (Crop)Pests (Crop) MortalityMortality (%)(%) ReferenceReference Beauveria bassiana 1 X 108 Lygus lineeolaris 77.47 Sabbahi et al., 2008 1 X 108 Anthonomus signatus 60.35 1 X 108 Otiorhynchus ovatus 54.50 1 X 1010 Holotrichia consanguinea 56.67 Jat and Choudhary, 20065 X 109 Holotrichia consanguinea 53.33 1 X 107 Varroa destructor 100.00 Meikle et al., 2006 Metarhizium anisopliae 1 X 107 Varroa destructor 75.00 Meikle et al., 2006 Nomurea rileyi 1 X 108 Helicoverpa armigera 82.10 Snegapriya and Manjula, 2008 1 X 109 Helicoverpa armigera 70.00 Manjula and krishnamurthy, 2005 1 X 109 Spodoptera litura 53.40 Manjula and krishnamurthy,
  30. 30. Population density of Diamondback mothlarvae, Plutella xylostella on cauliflower Treatment Average number of DBM per m2 B.Bassiana (VL1-SCL) 90.0 77.6 56.4 44.0 30.4 B. bassiana (OM2-SDO) 96.4 80.8 55.2 32.8 22.4 M.anisopliae (OM1-R) 84.8 75.6 50.4 32.8 25.6 M.anisopliae (OM3-STO) 94.8 77.2 46.0 24.8 19.2 (min.) Crymax35W P 87.2 68.4 42.4 26.4 20.0 Atabron 5EC 80.4 71.6 56.4 41.6 32.8 3 DAT 5 DAT 7 DAT1 DAT 1 DBT Loc, N.T and Chi, T.B. (2007). Biocontrol potential of Metarhizium anisopliae and Beauveria bassiana against diamondback moth, Plutella xylostella. Omonrice.,15: 86-93.
  31. 31. Field efficacy of certain M. anisopliae and B. bassiana isolates against DBM larvae, Plutella xylostella Treatment concentration mortality (%) B.Bassiana (VL1-SCL) 107 conidia/ml 38.6 51.0 64.3 B. bassiana (OM2-SDO) 107 conidia/ml 43.2 65.2 75.3 M.anisopliae (OM1-R) 107 conidia/ml 39.7 60.7 67.4 M.anisopliae (OM3-STO) 107 conidia/ml 52.4 74.2 78.5(max.) Crymax35WP 0.1% 53.5 70.0 76.1 Atabron 5EC 0.3% 30.0 44.8 53.7 CV (%) - 16.7 13.2 10.2 3 DAT 5 DAT 7 DAT Loc, N.T and Chi, T.B. (2007). Biocontrol potential of Metarhizium anisopliae and Beauveria bassiana against diamondback moth, Plutella xylostella. Omonrice.,15: 86-93.
  32. 32. Effect of M. anisopliae and B. bassiana on ratio of commodity cauliflower and cauliflower yield Treatment Ratio of commodity (cauliflower %) Yield B.Bassiana (VL1-SCL) 68.3 6.37 58.1 B. bassiana (OM2- SDO) 85.0 6.78 68.2 M.anisopliae (OM1-R) 83.3 6.72 66.7 M.anisopliae (OM3- STO) 91.7 6.98 73.2 Crymax35WP 93.3 7.04 74.76 (max.) Atabron 5EC 63.3 5.97 48.1 Untreated control 13.3 4.03 t/ha Increased over control(%) Loc, N.T and Chi, T.B. (2007). Biocontrol potential of Metarhizium anisopliae and Beauveria bassiana against diamondback moth, Plutella xylostella. Omonrice.,15: 86-93.
  33. 33. Protozoans • More than 100 species are pathogenic to insects • Chronic nature of infection so limited efficiency • Few are Highly virulent or fast acting so more appropriate for long term control programmes with high economic injury level • Important Phyla of Protista are: Sarcomastigophora, Apicomplexa, Microspora and Ciliophora
  34. 34. Protozoans considered for control of insect pests Parasite Host Nosema acridophagous, N. cuneatum, N. locustae Grasshoppers N. algerae Anopheles albimanus, Culex tritaeniorhynchus N. fumifueranae Spruce budworm N. heliothidis Helicoverpa zea N. pyrausta Ostrinia nubialis N. whitei Tribolium castaneum N. spp. Helicoverpa armigera, Spodoptera litura Vairimorpha necatrix Agrotis ipsilon, Helicoverpa zea
  35. 35. Protozoan insecticides Nosema locustae Specific to grasshoppers and Mormon cricket Slow acting Most appropriate for long term management Limited shelf life Nolo bait
  36. 36.  Entomopathogenic nematodes are a group of nematodes causing death to insects  The infective juveniles of entomopathogenic nematodes is 3rd instars  Soil inhabiting  Endoparasitic  EPN’s have been found in all ecologically diverse habitats, from cultivated fields to deserts Entomopathogenic nematode
  37. 37. Infective juvenile Host finding Infection Release of bacteria Host killed Development & reproduction of nematodeInfective juvenile emergence Mode of Action
  38. 38. Effect of entomopathogenic nematodes on flea beetle at different temperature LC50 Nematode species 150 C 200 C 250 C S. feltiae 975 1044 730 S. carpocapsae _ 752 870 H. megidis 1354 1020 1148 H. bacteriophora 2492 912 778 Trdan, et al (2008). Acta Agriculturae Scandinavica Soil and Plant Science., 58: 169-175.
  39. 39. Commercial products of Entomopathogenic nematode available in international market Nematode species Product formulation Country Steinernema carpocapsae Green commandos, Soil commandos India Sanoplant Switzerland Boden Nutz;linge Germany Helix Canada X-GNAT, Vector TL USA S. feltiae Magent USA Nemasys, Stealth UK Entonem USA S. riobrave Vector MG, Bio Vector USA Heterorhabditis bacteriophora Otinem USA H. megidis Nemasys UK S. carpocapsae Ortho, Biosafe, Bio Vector, Exhibit USA Vashisth, S., Chandel, Y.S and Sharma, P.K. (2013). Agri. Reviews, 34 (3) : 163-175.
  40. 40. Desirable characteristics required in microbial pesticides Characteristic Bacteria Fungi Viruses Protozoa Nematode Time to kill Good Poor Poor Poor Good Easy to apply Yes Yes Yes Yes Yes Storage Characteristics Good Poor Good Poor Good Environmental stability Poor Poor Poor Poor Poor Safe to non target organisms Yes Yes Yes Yes Yes Easy to produce Yes Yes Poor Poor Yes
  41. 41.  The microbial pesticide are potential bio-agents amenable for mass production, handling and application on a large scale in the field for management of insect pests.  Microbial pesticides provide effective alternatives in an eco-friendly way for the management of many insect pests.  Maximum used microbial pesticides in world is bacteria (60%) followed by fungi (27%), virus (10%), nematode, protozoa etc.  Rapid degradation by UV light, Poor water solubility, poor storage capacity and non-availability of microbial pesticide limited their use.  For expanded use of microbial pesticide there is need to exploit the potential biodiversity in the country by continued surveys. Conclusion

×