Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Investigating Fruit Juice Authenticity using MS - Waters Corporation Food Research

2,246 views

Published on

Food fraud has become a major concern in recent years. Fruit juice is commonly adulterated with cheaper alternatives. High resolution MS in combination with 'omics data analysis approaches can identify markers of adulteration.

Published in: Food
  • Be the first to comment

  • Be the first to like this

Investigating Fruit Juice Authenticity using MS - Waters Corporation Food Research

  1. 1. ©2015 Waters Corporation 1 Investigating Fruit Juice Authenticity using MS and ‘Omics approaches
  2. 2. ©2015 Waters Corporation 2 Presentation overview  Project Background  Workflow  Results o UV o MS  Sample Comparison o Visual inspection o Software interpretation  Why are they different? o Are there any marker compounds? o Can we ID marker compounds?  Ion mobility for discovery of natural compounds
  3. 3. ©2015 Waters Corporation 3 Project background  Activities in food fraud and authenticity has increased in importance over the last decade – Estimated to cost $10-$15 billion per year  Fruit juices (orange and apple juice) were in the top 7 foods reported from 1980 to 2010 as the most common targets for adulteration  Food & beverage products are adulterated in many different ways: – Be harmful to health – Misleading to the consumer o …includes unacceptable enhancement, dilution and/or substitution with less expensive ingredients, failure to declare contamination and inaccurate or misleading labelling of a product or ingredient  Reported cases of adulterated fruit juices have been economically driven, e.g. inclusion of high fructose corn syrup, other fruit juices…
  4. 4. ©2015 Waters Corporation 4 Workflow Overview How did we perform the analysis?
  5. 5. ©2015 Waters Corporation 5 Results: PDA & MS (exact mass) Data Time 2.00 3.00 4.00 5.00 6.00 7.00 % 1 2.00 3.00 4.00 5.00 6.00 7.00 % 3 2.00 3.00 4.00 5.00 6.00 7.00 AU 0.0 2.5e-2 5.0e-2 PA_24_2_010 4: Diode Array 269 Range: 7.395e-2 4.81 1.30 4.29 1.75 2.53 3.99 5.66 PA_24_2_010 1: TOF MS ES- BPI 2.09e4 2.85 1.33 1.83 5.24 4.44 3.91 5.68 PA_24_2_010 2: TOF MS ES- BPI 9.19e3 5.04 1.33 5.68 MS – product ions MS – precursor ions PDA
  6. 6. ©2015 Waters Corporation 6 Sample Comparison Visual inspection – Study Samples: Time 1.00 2.00 3.00 4.00 5.00 6.00 7.00 AU 0.0 5.0e-2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 AU 0.0 5.0e-2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 AU 0.0 5.0e-2 1.29 4.80 4.56 2.73 1.73 3.27 5.61 1.30 4.80 4.55 2.70 3.26 5.61 4.81 1.30 4.44 2.71 3.27 5.65
  7. 7. ©2015 Waters Corporation 7 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 -1200 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 1200 t[2] t[1] Scores Comp[1] vs. Comp[2] colored by Sample Group S10 S11 S12 S12 S12 S12 S12 S12 S12 S12 S11 S11S11 S11S11 S11 S11 S11 S10 S10 S10 S10S10 S10 S10 S10S10 EZinf o 2 - Negativ e_Pineapple_no_QC_3_samples (M8: PCA-X) - 2011-02-28 20:50:30 (UTC-5) Sample Comparison Software inspection – Study Samples
  8. 8. ©2015 Waters Corporation 8 Sample Comparison Software inspection – Study & Supermarket samples Supermarket samples Study samples
  9. 9. ©2015 Waters Corporation 9 Identify Markers for Observed Differences OPLS-DA Model: 207 / 316 & 102
  10. 10. ©2015 Waters Corporation 10 Identify Markers for Observed Differences S-Plot: 207 / 316 & 102 -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 -0.2 -0.1 -0.0 p(corr)[1]P(Correlation) w*[1]P (Covariance) S-Plot (S10 = -1, S11_S12 = 1) EZinf o 2 - Negativ e_Pineapple_S10_VS11S12 (M6: OPLS-DA) - 2011-03-11 09:49:12 (UTC-5) Rt 5.03- m/z 649.2495 Rt 5.55-m/z 579.1712 Rt 5.67-m/z 609.1616 Rt 5.10-m/z 711.2862
  11. 11. ©2015 Waters Corporation 11 Identify Markers for Observed Differences Trend Plot for the markers in all samples 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 S12 S12 S12 S12 S12 S12 S12 S12 S11 S11 S11 S11 S11 S11 S11 S11 S10 S10 S10 S10 S10 S10 S10 S10 QC QC QC QC QC QC QC LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ Sample Group Variables EZinf o 2 - Negativ e_Pineapple_w_QC (M6: PCA-X) - 2011-03-11 10:35:34 (UTC-5)
  12. 12. ©2015 Waters Corporation 12 Why are there differences?
  13. 13. ©2015 Waters Corporation 13 Why are there differences? Marker ID – using R.T, MS and UV
  14. 14. ©2015 Waters Corporation 14 Time 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 % 0 100 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 % 0 100 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 % 0 100 PA_24_2_063a 1: TOF MS ES- 609.182 0.0030Da 8.09e3 PA_24_2_062a 1: TOF MS ES- 609.182 0.0030Da 8.09e3 5.66 PA_24_2_061a 1: TOF MS ES- 609.182 0.0030Da 8.09e3 Why are there differences? Marker ID – using R.T, MS and UV
  15. 15. ©2015 Waters Corporation 15 Why are there differences? Marker ID – using R.T, MS and UV m/z 50 100 150 200 250 300 350 400 450 500 550 600 650 % 0 100 301.0706 609.1822
  16. 16. ©2015 Waters Corporation 16 Why are there differences? Marker ID – using R.T, MS and UV m/z 50 100 150 200 250 300 350 400 450 500 550 600 650 % 0 100 301.0706 609.1822
  17. 17. ©2015 Waters Corporation 17 nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 2.0e-2 2.5e-2 nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 2.0e-2 2.5e-2 Time 3.00 4.00 5.00 6.00 7.00 AU 0.0 1.0e-2 2.0e-2 3.0e-2 4.0e-2 5.0e-2 3.00 4.00 5.00 6.00 7.00 AU 0.0 1.0e-2 2.0e-2 3.0e-2 4.0e-2 5.0e-2 PA_24_2_096a 4: Diode Array 283 Range: 2.583e-2 5.66 PA_24_2_071a 4: Diode Array 283 Range: 5.559e-2 4.83 4.31 2.73 3.993.33 5.03 5.66 Confirm marker Identification Marker ID – using R.T, MS and UV
  18. 18. ©2015 Waters Corporation 18 Confirm marker Identification Marker ID – using R.T, MS and UV Time 1.00 2.00 3.00 4.00 5.00 6.00 7.00 % 0 100 1.00 2.00 3.00 4.00 5.00 6.00 7.00 % 0 100 PA_24_2_098a 2: TOF MSMS ES- 609.182 0.0050Da 1.96e3 5.67 PA_24_2_093a 2: TOF MSMS ES- 609.182 0.0050Da 3.57e3 5.67 m/z 100 200 300 400 500 600 % 0 100 m/z 100 200 300 400 500 600 % 0 100 301.0707 609.1819 301.0706 609.1821
  19. 19. ©2015 Waters Corporation 19 Hesperidin Sources
  20. 20. ©2015 Waters Corporation 20 Identifying other markers highlighted....
  21. 21. ©2015 Waters Corporation 21 Identify Markers for Observed Differences Trend Plot for the markers in all samples 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 S12 S12 S12 S12 S12 S12 S12 S12 S11 S11 S11 S11 S11 S11 S11 S11 S10 S10 S10 S10 S10 S10 S10 S10 QC QC QC QC QC QC QC LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ Sample Group Variables EZinf o 2 - Negativ e_Pineapple_w_QC (M6: PCA-X) - 2011-03-11 10:35:34 (UTC-5)
  22. 22. ©2015 Waters Corporation 22 Time 2.00 3.00 4.00 5.00 6.00 7.00 % 0 100 2.00 3.00 4.00 5.00 6.00 7.00 % 0 100 2.00 3.00 4.00 5.00 6.00 7.00 % 0 100 PA_24_2_070a 1: TOF MS ES- 579.171 0.0030Da 4.12e3 PA_24_2_071a 1: TOF MS ES- 579.171 0.0030Da 4.12e3 5.54 PA_24_2_072a 1: TOF MS ES- 579.171 0.0030Da 4.12e3 Identify Markers for Observed Differences Potential Compound ID’ed as Naringen
  23. 23. ©2015 Waters Corporation 23 Time 2.00 4.00 6.00 % 0 100 2.00 4.00 6.00 AU 0.0 1.0e-2 2.0e-2 PA_24_2_097a 4: Diode Array 280 Range: 3.084e-2 5.57 PA_24_2_097a 1: TOF MS ES- 579.171 0.0030Da 1.73e4 5.59 Identify Markers for Observed Differences Potential Compound ID’ed as Naringen Same elemental composition C27H31O14 Time 2.00 4.00 6.00 % 0 100 2.00 4.00 6.00 AU 0.0 2.0e-2 4.0e-2 6.0e-2 PA_24_2_062a 4: Diode Array 280 Range: 6.675e-2 1.31 4.80 4.28 2.70 3.95 3.31 5.64 PA_24_2_062a 1: TOF MS ES- 579.171 0.0030Da 8.08e3 5.54
  24. 24. ©2015 Waters Corporation 24 Identify Markers for Observed Differences Potential Compound – Naringen ”like” m/z 100 200 300 400 500 600 % 0 100 m/z 100 200 300 400 500 600 % 0 100 579.1720 271.0604 151.0029 459.1152 271.0603 151.0029 579.1714 Naringin like component nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 nm 260 280 300 320 340 AU 0.0 5.0e-3 1.0e-2 1.5e-2 JA-11S2-102
  25. 25. ©2015 Waters Corporation 25 C27H32O14 MW:580.54
  26. 26. ©2015 Waters Corporation 26 Identify Markers for Observed Differences Trend Plot for the markers in all samples 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 S12 S12 S12 S12 S12 S12 S12 S12 S11 S11 S11 S11 S11 S11 S11 S11 S10 S10 S10 S10 S10 S10 S10 S10 QC QC QC QC QC QC QC LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ Sample Group Variables EZinf o 2 - Negativ e_Pineapple_w_QC (M6: PCA-X) - 2011-03-11 10:35:34 (UTC-5)
  27. 27. ©2015 Waters Corporation 27 Identify Markers for Observed Differences Trend Plot for the markers in all samples 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 S12 S12 S12 S12 S12 S12 S12 S12 S11 S11 S11 S11 S11 S11 S11 S11 S10 S10 S10 S10 S10 S10 S10 S10 QC QC QC QC QC QC QC LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ LWOPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ KnPAJ Sample Group Variables EZinf o 2 - Negativ e_Pineapple_w_QC (M6: PCA-X) - 2011-03-11 10:35:34 (UTC-5) Rt 5.10 min, m/z 711.2862 Nomilinic acid 17-beta-D-glucopyranoside (NAG) Rt 5.03 min, m/z 649.2495 Limonin 17-beta-D-glucopyranoside (LG)
  28. 28. ©2015 Waters Corporation 28 Conclusions
  29. 29. ©2015 Waters Corporation 29 Conclusions  Using the data processing tools we were able to identify the presence of citrus components in JA-11S2-102.  Flavone-O-glycosides – Hesperidin – Naringin “like” compound possibly narirutin  Tentative identification of two citrus limonoids (no standards available) – Limonin 17-beta-D-glucopyranoside (LG) – Nomilinic acid 17-beta-D-glucopyranoside (NAG)

×