SlideShare a Scribd company logo
1 of 55
Download to read offline
Scaling and High Performance
Storage System
Yosuke Hara - @yosukehara
A Researcher of R.I.T. and Tech Lead LeoFS
with Hiroki Matsue, LeoFS Support and Rakuten Software Engineer
LeoFS is "Unstructured Big Data Storage for the Web"
and a highly available, distributed, eventually consistent
storage system.
!
Organizations can use LeoFS to store lots of data
efficently, safely and inexpensively.
!
LeoFS was published as OSS
on July of 2012
leo-project.net/leofs
Overview
Brief Benchmark Report
Multi Data Center Replication
LeoFS Administration at Rakuten
Future Plans
“NFS” Support and more
Overview
Tokyo, Japan
The Lion of Storage Systems
HIGH Availability
HIGH Cost
Performance Ratio
HIGH
Scalability
LeoFS Non Stop
Velocity: Low Latency
Minimum Resources
Volume: Petabyte / Exabyte
Variety: Photo, Movie, Unstructured-data
3 Vs in 3 HIGHs
Metadata Object Storage
Storage Engine/Router
Monitor
GUI Console
( Erlang RPC)
LeoFS Overview
Storage
Manager
( Erlang RPC)
Gateway
( TCP/IP,SNMP )
Request from
Web Applications / Browsers
w/HTTP over REST-API / S3-API
Load Balancer
Keeping High Availability
Keeping High Performance
Easy Administration
Metadata Object Storage
Storage Engine/Router
Metadata Object Storage
Storage Engine/Router
Gateway
LeoFS Overview - Gateway
Stateless Proxy + Object Cache
REST-API / S3-API
Use Consistent Hashing
for decision of a primary node
[ Memory Cache, Disc Cache ]
StorageClusterGateway(s)Clients
HTTP Request and Response
Built in Object Cache Mechanism
Storage Cluster
Fast HTTP Server - Cowboy
API Handler
Object Cache Mechanism
Storage
Storage(StorageCluster)GatewayLeoFS Overview - Storage
Use "Consistent Hashing"
for Data Operation
in the Storage Cluster
Choosing Replica Target Node(s)
RING
2 ^ 128 (MD5)
# of replicas = 3
KEY = “bucket/leofs.key”
Hash = md5(Filename)
Secondary-1
Secondary-2
Primary Node
"P2P"
WRITE: Auto Replication
READ : Auto Repair of an Inconsistent Object with Async
Request From Gateway
LeoFS Overview - Storage
...
LeoFS Storage
Replicator
Recoverer
...
Storage Engine
StorageEngine,Metadata+ObjectStorageGateway
Storage consists of Object Storage and Metadata Storage
Includes Replicator and Recoverer for the eventual consistency
Metadata
Storage Object
Storage
LeoFS Overview - Storage - Data StructureMetadata
Storage
ObjectStorage
Robust and
High Performance
Necessary for GC
Offset Version
Time-
stampKey
<Metadata>
Checksum
for Sync
KeySize
Custom
Meta Size File Size
for retrieving an object
Footer (8B)
Checksum KeySize DataSize Offset Version
Time-
stamp
Key User-Meta Footer
Header (Metadata - Fixed length) Body (Variable Length)
User-Meta
Size
Actual
File
<Needle>
Super-block
Needle-1
Needle-2
Needle-3
<Object Container>
Needle-4
Needle-5
To Equalize Disk Usage in Every Storage Node
To Realize High I/O efficiency and High Availability
LeoFS Overview - Storage - Large Object Support
chunk-0
chunk-1
chunk-2
chunk-3
An Original Object’s Metadata
Original Object Name
Original Object Size
# of Chunks
Storage ClusterGatewayClient(s)
[ WRITE Operation ]
Chunked Objects
Every chunked object and
metadata are replicated
in the cluster
Manager
Storage Cluster
LeoFS Overview - Manager
Monitor
Operate
RING, Node State
status, suspend,
resume, detach,
whereis, ...
Gateway(s)
StorageClusterGateway(s)
Manager(s)
Operate LeoFS - Gateway and Storage Cluster
"RING Monitor" and "NodeState Monitor"
Brief
Benchmark
Report
Hokkaido, Japan
LeoFS kept in a stable performance
through the benchmark
Brief Benchmark Report
Bottleneck is Disk I/O
The cache mechanism contributed to reduce
network traffic between Gateway and Storage
Summary of the benchmark results
Brief Benchmark Report
1st Case:
Group of Value Ranges (HDD)
Storage:5, Gateway:1, Manager:2
R:W = 9:1
2nd Case:
Group of Value Ranges (HDD)
Storage:5, Gateway:1, Manager:2
R:W = 8:2
source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m_r9w1_240min
source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140605/tests/1m_r8w2_120min
Brief Benchmark Report
CPU Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads)
Memory 96GB
Disk HDD - 240GB RAID0
Network 10G-Ether
Server Spec - Gateway:
CPU Intel(R) Xeon(R) CPU X5650 @ 2.67GHz * 2 (12 cores / 24 threads)
Memory 96GB
Disk
HDD - 240GB RAID0 (System)
HDD - 2TB RAID0 (Data)
Network 10G-Ether
Server Spec - Storage x5:
Network 10Gbps
OS CentOS release 6.5 (Final)
Erlang OTP R16B03-1
LeoFS v1.0.2
Environment:
System Consistency Level: [ N:3, W:2, R:1, D:2 ]
Duration 4.0h
R:W 9:1
# of Concurrent Processes 64
# of Keys 100,000
Value Size
!
!
!
!
!
Benchmark Configuration:
Range (byte) Percentage
1024 10240 24%
10241 102400 30%
10241 819200 30%
819201 1572864 16%
Brief Benchmark Report - 1st Case (HDD / R:W=9:1)
source: https://github.com/leo-project/notes/tree/master/leofs/benchmark/leofs/20140601/tests/1m_r9w1_240min
50ms
Brief Benchmark Report - 1st Case (HDD / R:W=9:1)
50ms
1,500ops
No Errors
0
50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000
550,000
600,000
650,000
700,000
750,000
800,000
850,000
900,000
950,000
1,000,000
1,050,000
1,100,000
1,150,000
1,200,000
1,250,000
1,300,000
1,350,000
1,400,000
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
7500s
8000s
8500s
9000s
9500s
10000s
10500s
11000s
11500s
12000s
12500s
13000s
13500s
14000s
gateway rxbyt/s gateway txbyt/s
storage-1 rxbyt/s storage-1 txbyt/s
storage-2 rxbyt/s storage-2 txbyt/s
storage-3 rxbyt/s storage-3 txbyt/s
storage-4 rxbyt/s storage-4 txbyt/s
storage-5 rxbyt/s storage-5 txbyt/s
Brief Benchmark Report - 1st Case / Network Traffic
10.0Gbps
7.0Gbps
5.0Gbps
6.0Gbps
StorageGateway
60%
0.0
0.1
0.3
0.4
0.6
0.7
0.9
1.0
1.1
1.3
1.4
1.6
1.7
1.9
2.0
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
7500s
8000s
8500s
9000s
9500s
10000s
10500s
11000s
11500s
12000s
12500s
13000s
13500s
14000s
Memory Usage
CPU Load 5min
Brief Benchmark Report - 1st Case / Memory and CPU
1.0
0
10
20
30
40
50
60
70
80
90
100
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
7500s
8000s
8500s
9000s
9500s
10000s
10500s
11000s
11500s
12000s
12500s
13000s
13500s
14000s
gateway storage-1 storage-2 storage-3 storage-4 storage-5
Network 10Gbps
OS CentOS release 6.5 (Final)
Erlang OTP R16B03-1
LeoFS v1.0.2
Environment:
System Consistency Level: [ N:3, W:2, R:1, D:2 ]
Duration 2.0h
R:W 8:2
# of Concurrent Processes 64
# of Keys 100,000
Value Size
!
!
!
!
!
Benchmark Configuration:
Brief Benchmark Report - 2nd Case (HDD / R:W=8:2)
Range (byte) Percentage
1024 10240 24%
10241 102400 30%
10241 819200 30%
819201 1572864 16%
Brief Benchmark Report - 2nd Case (HDD / R:W=8:2)
60-70ms 80-90ms
1,000ops
No Errors
Compare 1st case
with 2nd case
0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000
1,000,000
1,100,000
1,200,000
1,300,000
1,400,000
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
gateway rxbyt/s gateway txbyt/s
storage-1 rxbyt/s storage-1 txbyt/s
storage-2 rxbyt/s storage-2 txbyt/s
storage-3 rxbyt/s storage-3 txbyt/s
storage-4 rxbyt/s storage-4 txbyt/s
storage-5 rxbyt/s storage-5 txbyt/s
0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000
1,000,000
1,100,000
1,200,000
1,300,000
1,400,000
1,500,000
1,600,000
1,700,000
1,800,000
1,900,000
2,000,000
2,100,000
2,200,000
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
6.0Gbps
Brief Benchmark Report
7.0Gbps
6.0Gbps
7.0Gbps
minus 0.7Gbps
1st Case - Network Traffic
2nd Case - Network Traffic
0.0
50.0
100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0
550.0
600.0
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
0.0
50.0
100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0
550.0
600.0
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
storage-1
storage-2
storage-3
storage-4
storage-5
100
100
Brief Benchmark Report
2nd Case - Disk util%
200
200
1st Case - Disk util%
1.8x high
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
Brief Benchmark Report
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
0s
500s
1000s
1500s
2000s
2500s
3000s
3500s
4000s
4500s
5000s
5500s
6000s
6500s
7000s
1.00
1.00
1.6x high
2nd Case - CPU Load 5min
1st Case - CPU Load 5min
LeoFS kept in a stable performance
through the benchmark
Brief Benchmark Report
Bottleneck is Disk I/O
The cache mechanism contributed to reduce
network traffic between Gateway and Storage
Conclusion:
Multi
Data Center
Replication
Hokkaido, Japan
Tokyo
Europe
US
Multi Data Center Replication
HIGH-Scalability
HIGH-Availability
Easy Operation for Admins
+
NO SPOF
NO Performance Degradation
Singapore
1. Easy Operation to build multi clusters.
2. Asynchronous data replication between clusters
Stacked data is transferred to remote cluster(s)
3. Eventual consistency
Multi Data Center Replication
Designed it as simple as possible
DC-3DC-2
StorageclusterManagerclusterClient
DC-1
Monitors and Replicates each “RING” and “System Configuration”
"Leo Storage Platform"
[# of replicas:1] [# of replicas:1][# of replicas:3]
"join cluster DC-2 and DC-3"
leo_rpcleo_rpc
Multi Data Center Replication
Executing “Join Cluster”
on Manager Console
Preparing MDC Replication
DC-3DC-2
StorageclusterManagerclusterClient
Monitors and Replicates each “RING” and “System Configuration”
"Leo Storage Platform"
[# of replicas:1] [# of replicas:1]
Request to
the Target Region
Application(s)
DC-1
[# of replicas:3]
Temporally Stacking objects
- One container's capacity is *32MB
- When capacity is full,
send it to remote cluster(s)
* 32MB: default capacity - able to set optional value
leo_rpcleo_rpc
Multi Data Center Replication
Stacking objects
DC-3DC-2
StorageclusterManagerclusterClient
Monitors and Replicates each “RING” and “System Configuration”
"Leo Storage Platform"
DC-1
Stacked an object with a metadata
Compress it with LZ4
Replicated an object
Request to
the Target Region
Application(s)
leo_rpc
leo_rpc
leo_rpc
Multi Data Center Replication
Transferring stacked objects
Stacked objects
DC-3DC-2
StorageclusterManagerclusterClient
Monitor and Replicate each “RING” and “System Configuration”
"Leo Storage Platform"
Request to
the Target Region
Application(s)
DC-1
1) Receive metadata of stored objects
2) Compare them at the local cluster
3) Fix inconsistent objects
leo_rpcleo_rpc
leo_rpc
leo_rpc
Multi Data Center Replication
Investigating stored objects
LeoFS

Administration
at Rakuten
Presented by Hiroki Matsue
Rakuten Software Engineer
Tokyo, JapanKyoto, Japan
Storage Platform
File Sharing Service
Others
Portal Site
Photo Storage
Background Storage of OpenStack
LeoFS Administration at Rakuten
Storage Platform
Storage Platform - Scaling the Storage Platform
(Movie)
Reduce Costs
High Reliability
Easy to Scale
S3-API
Using Various Services
Total Usage: 450TB	
# of Files: 600Million	
Daily Growth: 100GB	
Daily Reqs: 13Million
Storage Platform - Scaling the Storage Platform
E-Commerce
Blog
Insurance Calendar
Recruiting
Review Photo
share
Portal &
Contents
Bookmark
B
Storage
Platform
(Movie)
Monitor
GUI Console
( Erlang RPC)
( Erlang RPC)
( TCP/IP,SNMP )
Gatewayx4Storagex14
Manager x 2
Requests from
Web Applications / Browsers
w/HTTP over S3-API
Load Balancer / Cache Servers
Storage Platform - System Layout
Total disk space: 600TB
Number of Files: 600Million
Access Stats:
800Mbps (MAX)
400Mbps (AVG)
Monitor
GUI Console
( Erlang RPC)
( Erlang RPC)
( TCP/IP,SNMP )
Gatewayx4Storagex14
Manager x 2
Storage Platform - Monitor
Send Mail Alert
Ganglia and
Nagios Agent
Status Collection (Ganglia)
Status Check (Nagios)
Port + Threshold Check
Storage Platform - Spreading Globally
Covering All Services
with Multi DC Replication
File Sharing Service
+
https://owncloud.com/
+
File Sharing Service - Required Targets
Reduce Costs
Handle Confidential Files
Store Large Files
Scale Easily
+
Share Docs and Movies with Group Companies
Over 20 Companies, Over 10 Countries
Over 4,000 Users, Over 10,000 Teams
File Sharing Service - Usage
LDAP
Monitor
GUI Console
( Erlang RPC)
( Erlang RPC)
( TCP/IP,SNMP )
Manager x 2
Authenticate Users
Manage
Configurations
Manage
Login Session
(KVS)
File Sharing Service - System Layout
Web GUI File Browser
Cover 25 Countries/Regions
Over 20,000 Users
+
File Sharing Service - Future Plans
Empowering the Services and the Users
Through the Cloud Storage
Future Plans
Tokyo, JapanHokkaido, Japan
NFS Support
Future Plans
Data-HUB: Centralize unstructured data in LeoFS
Search / Analysis
PaaS / IaaS Photo-Storage
Many Kind of Data PhotoLog / Event Data
Loading Data
Analysis Data
Stream Processing
SavannaDB for Statistics Data
Retrieve
m
etrics
and
stats
from
SavannaDB's
Agents
Storage Cluster
ManagerGateway
The Lion of Storage Systems
REST-API (JSON)
Operate LeoFS
Notify
a
m
essage
of over #
of req
threshold
SavannaDB's Agent
Insight LeoFS
LeoInsight
Future Plans
+
Set Sail for “Cloud Storage”
Website: leo-project.net
Twitter: @LeoFastStorage
Facebook: www.facebook.com/org.leofs

More Related Content

What's hot

Heterogenous Migration with DMS & SCT
Heterogenous Migration with DMS & SCTHeterogenous Migration with DMS & SCT
Heterogenous Migration with DMS & SCTAmazon Web Services
 
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...Dremio Corporation
 
SMC304 Serverless Orchestration with AWS Step Functions
SMC304 Serverless Orchestration with AWS Step FunctionsSMC304 Serverless Orchestration with AWS Step Functions
SMC304 Serverless Orchestration with AWS Step FunctionsAmazon Web Services
 
Case Study: How to move from a Monolith to Cloud, Containers and Microservices
Case Study: How to move from a Monolith to Cloud, Containers and MicroservicesCase Study: How to move from a Monolith to Cloud, Containers and Microservices
Case Study: How to move from a Monolith to Cloud, Containers and MicroservicesKai Wähner
 
AWS S3 Tutorial For Beginners | Edureka
AWS S3 Tutorial For Beginners | EdurekaAWS S3 Tutorial For Beginners | Edureka
AWS S3 Tutorial For Beginners | EdurekaEdureka!
 
Real-time Data Processing Using AWS Lambda
Real-time Data Processing Using AWS LambdaReal-time Data Processing Using AWS Lambda
Real-time Data Processing Using AWS LambdaAmazon Web Services
 
Can Apache Kafka Replace a Database?
Can Apache Kafka Replace a Database?Can Apache Kafka Replace a Database?
Can Apache Kafka Replace a Database?Kai Wähner
 
Amazon EMR Deep Dive & Best Practices
Amazon EMR Deep Dive & Best PracticesAmazon EMR Deep Dive & Best Practices
Amazon EMR Deep Dive & Best PracticesAmazon Web Services
 
Building a centralized observability platform
Building a centralized observability platformBuilding a centralized observability platform
Building a centralized observability platformElasticsearch
 
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Amazon Web Services Korea
 
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...Simplilearn
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Ryan Blue
 
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)confluent
 
Introduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceIntroduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceAmazon Web Services
 

What's hot (20)

(STG402) Amazon EBS Deep Dive
(STG402) Amazon EBS Deep Dive(STG402) Amazon EBS Deep Dive
(STG402) Amazon EBS Deep Dive
 
Heterogenous Migration with DMS & SCT
Heterogenous Migration with DMS & SCTHeterogenous Migration with DMS & SCT
Heterogenous Migration with DMS & SCT
 
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...
The Future of Column-Oriented Data Processing With Apache Arrow and Apache Pa...
 
SMC304 Serverless Orchestration with AWS Step Functions
SMC304 Serverless Orchestration with AWS Step FunctionsSMC304 Serverless Orchestration with AWS Step Functions
SMC304 Serverless Orchestration with AWS Step Functions
 
Case Study: How to move from a Monolith to Cloud, Containers and Microservices
Case Study: How to move from a Monolith to Cloud, Containers and MicroservicesCase Study: How to move from a Monolith to Cloud, Containers and Microservices
Case Study: How to move from a Monolith to Cloud, Containers and Microservices
 
AWS S3 Tutorial For Beginners | Edureka
AWS S3 Tutorial For Beginners | EdurekaAWS S3 Tutorial For Beginners | Edureka
AWS S3 Tutorial For Beginners | Edureka
 
Real-time Data Processing Using AWS Lambda
Real-time Data Processing Using AWS LambdaReal-time Data Processing Using AWS Lambda
Real-time Data Processing Using AWS Lambda
 
Can Apache Kafka Replace a Database?
Can Apache Kafka Replace a Database?Can Apache Kafka Replace a Database?
Can Apache Kafka Replace a Database?
 
Amazon EMR Deep Dive & Best Practices
Amazon EMR Deep Dive & Best PracticesAmazon EMR Deep Dive & Best Practices
Amazon EMR Deep Dive & Best Practices
 
Azure storage
Azure storageAzure storage
Azure storage
 
Deep Dive on AWS Lambda
Deep Dive on AWS LambdaDeep Dive on AWS Lambda
Deep Dive on AWS Lambda
 
AWS Technical Essentials Day
AWS Technical Essentials DayAWS Technical Essentials Day
AWS Technical Essentials Day
 
Building a centralized observability platform
Building a centralized observability platformBuilding a centralized observability platform
Building a centralized observability platform
 
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기
 
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...
AWS S3 | Tutorial For Beginners | AWS S3 Bucket Tutorial | AWS Tutorial For B...
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
 
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)
Dissolving the Problem (Making an ACID-Compliant Database Out of Apache Kafka®)
 
Introduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container ServiceIntroduzione a Amazon Elastic Container Service
Introduzione a Amazon Elastic Container Service
 
Introduction to AWS Glue
Introduction to AWS Glue Introduction to AWS Glue
Introduction to AWS Glue
 
Intro to AWS: Database Services
Intro to AWS: Database ServicesIntro to AWS: Database Services
Intro to AWS: Database Services
 

Viewers also liked

[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project
[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project
[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB ProjectRakuten Group, Inc.
 
Rakuten LeoFs - distributed file system
Rakuten LeoFs - distributed file systemRakuten LeoFs - distributed file system
Rakuten LeoFs - distributed file systemRakuten Group, Inc.
 
The State of Ceph, Manila, and Containers in OpenStack
The State of Ceph, Manila, and Containers in OpenStackThe State of Ceph, Manila, and Containers in OpenStack
The State of Ceph, Manila, and Containers in OpenStackSage Weil
 
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for HadoopSeungYong Baek
 
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech Talks
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech TalksDeep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech Talks
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech TalksAmazon Web Services
 
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐Terry Cho
 

Viewers also liked (6)

[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project
[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project
[RakutenTechConf2014] [D-4] The next step of LeoFS and Introducing NewDB Project
 
Rakuten LeoFs - distributed file system
Rakuten LeoFs - distributed file systemRakuten LeoFs - distributed file system
Rakuten LeoFs - distributed file system
 
The State of Ceph, Manila, and Containers in OpenStack
The State of Ceph, Manila, and Containers in OpenStackThe State of Ceph, Manila, and Containers in OpenStack
The State of Ceph, Manila, and Containers in OpenStack
 
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop
하둡 알아보기(Learn about Hadoop basic), NetApp FAS NFS Connector for Hadoop
 
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech Talks
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech TalksDeep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech Talks
Deep Dive on the AWS Storage Gateway - April 2017 AWS Online Tech Talks
 
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
 

Similar to Scaling and High Performance Storage System: LeoFS

RakutenTechConf2013] [D-3_1] LeoFS - Open the New Door
RakutenTechConf2013] [D-3_1] LeoFS - Open the New DoorRakutenTechConf2013] [D-3_1] LeoFS - Open the New Door
RakutenTechConf2013] [D-3_1] LeoFS - Open the New DoorRakuten Group, Inc.
 
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance Barriers
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance BarriersCeph Day Berlin: Ceph on All Flash Storage - Breaking Performance Barriers
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance BarriersCeph Community
 
User-space Network Processing
User-space Network ProcessingUser-space Network Processing
User-space Network ProcessingRyousei Takano
 
Stephan Ewen - Experiences running Flink at Very Large Scale
Stephan Ewen -  Experiences running Flink at Very Large ScaleStephan Ewen -  Experiences running Flink at Very Large Scale
Stephan Ewen - Experiences running Flink at Very Large ScaleVerverica
 
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화OpenStack Korea Community
 
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance Barriers
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance BarriersCeph Day Beijing - Ceph on All-Flash Storage - Breaking Performance Barriers
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance BarriersCeph Community
 
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...Odinot Stanislas
 
Apache Big Data EU 2015 - HBase
Apache Big Data EU 2015 - HBaseApache Big Data EU 2015 - HBase
Apache Big Data EU 2015 - HBaseNick Dimiduk
 
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...Виталий Стародубцев
 
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...In-Memory Computing Summit
 
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix cluster
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix clusterFive major tips to maximize performance on a 200+ SQL HBase/Phoenix cluster
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix clustermas4share
 
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark StreamingNear Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark StreamingDibyendu Bhattacharya
 
Plank
PlankPlank
PlankFNian
 

Similar to Scaling and High Performance Storage System: LeoFS (20)

RakutenTechConf2013] [D-3_1] LeoFS - Open the New Door
RakutenTechConf2013] [D-3_1] LeoFS - Open the New DoorRakutenTechConf2013] [D-3_1] LeoFS - Open the New Door
RakutenTechConf2013] [D-3_1] LeoFS - Open the New Door
 
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance Barriers
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance BarriersCeph Day Berlin: Ceph on All Flash Storage - Breaking Performance Barriers
Ceph Day Berlin: Ceph on All Flash Storage - Breaking Performance Barriers
 
User-space Network Processing
User-space Network ProcessingUser-space Network Processing
User-space Network Processing
 
optimizing_ceph_flash
optimizing_ceph_flashoptimizing_ceph_flash
optimizing_ceph_flash
 
Stephan Ewen - Experiences running Flink at Very Large Scale
Stephan Ewen -  Experiences running Flink at Very Large ScaleStephan Ewen -  Experiences running Flink at Very Large Scale
Stephan Ewen - Experiences running Flink at Very Large Scale
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화
[OpenStack Days Korea 2016] Track1 - All flash CEPH 구성 및 최적화
 
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance Barriers
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance BarriersCeph Day Beijing - Ceph on All-Flash Storage - Breaking Performance Barriers
Ceph Day Beijing - Ceph on All-Flash Storage - Breaking Performance Barriers
 
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...
Ceph: Open Source Storage Software Optimizations on Intel® Architecture for C...
 
Ceph
CephCeph
Ceph
 
Apache Big Data EU 2015 - HBase
Apache Big Data EU 2015 - HBaseApache Big Data EU 2015 - HBase
Apache Big Data EU 2015 - HBase
 
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...
Технологии работы с дисковыми хранилищами и файловыми системами Windows Serve...
 
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
 
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix cluster
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix clusterFive major tips to maximize performance on a 200+ SQL HBase/Phoenix cluster
Five major tips to maximize performance on a 200+ SQL HBase/Phoenix cluster
 
Ceph
CephCeph
Ceph
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark StreamingNear Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
Near Real time Indexing Kafka Messages to Apache Blur using Spark Streaming
 
Plank
PlankPlank
Plank
 

More from Rakuten Group, Inc.

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のりRakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みRakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャーRakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfRakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfRakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfRakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technologyRakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャーRakuten Group, Inc.
 

More from Rakuten Group, Inc. (20)

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
 

Recently uploaded

MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Mark Simos
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsYoss Cohen
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024TopCSSGallery
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfAarwolf Industries LLC
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 

Recently uploaded (20)

MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platforms
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
Landscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdfLandscape Catalogue 2024 Australia-1.pdf
Landscape Catalogue 2024 Australia-1.pdf
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 

Scaling and High Performance Storage System: LeoFS