SlideShare a Scribd company logo
Rakuten Data


 会場:C 15:00-15:45
   2010.10.16
Today’s Theme


What’s going on with Rakuten
           Data?




                +
Agenda



Outside Rakuten
  Web API
  Data Release for Academia
Inside Rakuten
  Data Integration by RDF
  Using LOD
Outside Rakuten
Outside Rakuten

        Web
        API
Rakuten Web Service API
API for golf courses
Outside Rakuten

   Data Release for
      Academia
Introduction

Objective
   Contribution to the research community through data
   distribution
   Open innovation for society of co-
   existence

Distribution
   Through IDR/NII and ALAGIN/NICT (free of charge)
   Only Academia for research purpose
Sample Data ( Rakuten Ichiba Items Data )

Rakuten Ichiba Items Data
  Column                                        Sample
shopurl     melissa
itemid      838223
name        【ジェットレーベル】JET LABELヘンリーネック着心地良く伸びる生地DESIGN
            フリル カットソー
caption     素材の上質さ・綺麗なシルエットに定評のあるブランドです。最近では新宿
            伊勢丹などをはじめ有名百 貨店などでも、取り扱われるなど赤丸急上昇で
            す!ベーシックでありながら、すこしだけ捻りのあるデザインなので
            ON/OFFコーディネイトに最適です。(職場・通勤にも、休日のジーニングス
            タイルにも対応できます。)着心地最高! 上質で肌触りが良く、スパンが効
            いてよく伸びる生地です。

url         http://www.rakuten.co.jp/melissa/931794/921910/
img_small   http://image.rakuten.co.jp/wshop/data/ws-mall-
            img/melissa/img64/img10532573746.jpeg
img_mideu   http://image.rakuten.co.jp/wshop/data/ws-mall-
m           img/melissa/img128/img10532573746.jpeg

price       7875
genreid     403862
Sample Data ( Travel Review Data )

        User Evaluation                 User Review             Hotel Master
    Column           Sample      Column          Sample      Column       Sample
post_no          7136071      hotel_id       28604        hotel_id      清里ゲス…
screen_name      ゆかっち…        user_post      初めて利…        hotel_name    ロイヤル…
purpose          その他          post_no        6525824
company          家族           category       感情・情報            Hotel Evaluation
place_point      4            plan_id        365683          Column       Sample
room_point       4            plan_title     朝食付き…        hotel id      1485
meal_point       0            room           2            place_point   3.99
                              _category                   room_point    3.37
bath_point       4
                              room_name      プレミア…        meal_p…       4.23
services_p…      3
facility_point   3            hotel_         スカイス…        bath_p…       3.34
                              comment
total_point      4                                        services_p    3.74
                                                          facility_p…   3.45
                                                          total_point   3.85
                                                          # of post     168
Sample Data ( Golf Course Data)

           Golf Courses                Courses Detail                 User Reviews
    Column            Sample       Column           Sample          Column       Sample
g_id             1684           c_id           5570          voice_id        535770
g_name           日向山…           g_no           1             c_id            1148
postal1          398            g_id           1407          screen name     いのA
addr             大町市            c_name         OUT           usecnt          4
tel1             261            par1           4             general_point   3
open_date        1974/8/1       par2           3             cp_point        3
facility         北アル…           par_all        35            staff_point     4
comment          GOR…           h_point1       7             course_point    4
shoes            2              h_point2       15            meal_point      5
dress            短ズボ…           exp1           短い距…          club_point      2
holiday          冬季             exp2           グリー…          q_subject       味があ…
pars             72                                          q_data          やはり…
rate             70.9                                        play_date       2009/5/2
…                …                                           …               …
Inside Rakuten
RDF




          rdf:type
                         yago:
Rakuten              CompanyOfJapan
Inside Rakuten

        Data
     Integration
How do we integrate data?




                    Complicated
                    Schemas ?
RDF Data Store is better




        RDF          Small Experiment in
     Data Store      Rakuten
Inside Rakuten

       Using
       LOD
Use LOD !




 us
 e
    Rakuten
Inside DBpedia




                                RDF
                             Data Store
Wikipedia
DBpedia Sample - Query



All soccer players,

who played as goalkeeper for a club
that has a stadium
with more than 40,000 seats
and who are born in a country with
more than 10 million inhabitants
DBpedia Sample - Query & Result




                           From Rakuten Ichiba
Problems on using LOD in Japan




No Japanese version DBpedia

Less LOD in Japan
Created DBpedia-like data by ourselves
          (Its in Japanese!)




                             Solr + RDF Store =
                             Hybrid
Linking by using LOD




      Rakuten           Rakuten
      EntameNa          Books
      vi




                   遥か/2009/GReeeeN
Summary
2 keywords




Semantic Web Technology

Open Innovation

More Related Content

Similar to Rakuten Data

SOLID principles
SOLID principlesSOLID principles
SOLID principles
Dmitry Kandalov
 
Apache Pinot Meetup Sept02, 2020
Apache Pinot Meetup Sept02, 2020Apache Pinot Meetup Sept02, 2020
Apache Pinot Meetup Sept02, 2020
Mayank Shrivastava
 
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
Yasuko Ohba
 
Duplicates everywhere (Kiev)
Duplicates everywhere (Kiev)Duplicates everywhere (Kiev)
Duplicates everywhere (Kiev)
Alexey Grigorev
 
CM NCCU Class2
CM NCCU Class2CM NCCU Class2
CM NCCU Class2
志明 陳
 
Rpg Pointers And User Space
Rpg Pointers And User SpaceRpg Pointers And User Space
Rpg Pointers And User Space
ramanjosan
 
Neo4j
Neo4jNeo4j
Neo4j
Von Stark
 
From logs to metrics
From logs to metricsFrom logs to metrics
From logs to metrics
Leonardo Di Donato
 
Data Science & AI Syllabus - DS & AI.pdf
Data Science & AI Syllabus - DS & AI.pdfData Science & AI Syllabus - DS & AI.pdf
Data Science & AI Syllabus - DS & AI.pdf
Aayushdigichrome
 
Python & machine learning Syllabus - DS & AI.pdf
Python & machine learning Syllabus - DS & AI.pdfPython & machine learning Syllabus - DS & AI.pdf
Python & machine learning Syllabus - DS & AI.pdf
Aayushdigichrome
 
Data Science & Artificial intelligence Syllabus - DS & AI.pdf
Data Science & Artificial intelligence Syllabus - DS & AI.pdfData Science & Artificial intelligence Syllabus - DS & AI.pdf
Data Science & Artificial intelligence Syllabus - DS & AI.pdf
DIGICROMESUPPORTTEAM
 
Data oriented design and c++
Data oriented design and c++Data oriented design and c++
Data oriented design and c++
Mike Acton
 
Balancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem FormulationBalancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem Formulation
Alex D. Gaudio
 
Refactor your specs! Øredev 2013
Refactor your specs! Øredev 2013Refactor your specs! Øredev 2013
Refactor your specs! Øredev 2013
Cyrille Martraire
 
What's new in Redis v3.2
What's new in Redis v3.2What's new in Redis v3.2
What's new in Redis v3.2
Itamar Haber
 
Agile 2012 Simple Design Applied
Agile 2012 Simple Design AppliedAgile 2012 Simple Design Applied
Agile 2012 Simple Design Applied
Declan Whelan
 
Simple design.published
Simple design.publishedSimple design.published
Simple design.published
drewz lin
 
Basic of python for data analysis
Basic of python for data analysisBasic of python for data analysis
Basic of python for data analysis
Pramod Toraskar
 
Letswift19-clean-architecture
Letswift19-clean-architectureLetswift19-clean-architecture
Letswift19-clean-architecture
Jung Kim
 
Dataiku hadoop summit - semi-supervised learning with hadoop for understand...
Dataiku   hadoop summit - semi-supervised learning with hadoop for understand...Dataiku   hadoop summit - semi-supervised learning with hadoop for understand...
Dataiku hadoop summit - semi-supervised learning with hadoop for understand...
Dataiku
 

Similar to Rakuten Data (20)

SOLID principles
SOLID principlesSOLID principles
SOLID principles
 
Apache Pinot Meetup Sept02, 2020
Apache Pinot Meetup Sept02, 2020Apache Pinot Meetup Sept02, 2020
Apache Pinot Meetup Sept02, 2020
 
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
Pragmatic Patterns of Ruby on Rails - Ruby Kaigi2009
 
Duplicates everywhere (Kiev)
Duplicates everywhere (Kiev)Duplicates everywhere (Kiev)
Duplicates everywhere (Kiev)
 
CM NCCU Class2
CM NCCU Class2CM NCCU Class2
CM NCCU Class2
 
Rpg Pointers And User Space
Rpg Pointers And User SpaceRpg Pointers And User Space
Rpg Pointers And User Space
 
Neo4j
Neo4jNeo4j
Neo4j
 
From logs to metrics
From logs to metricsFrom logs to metrics
From logs to metrics
 
Data Science & AI Syllabus - DS & AI.pdf
Data Science & AI Syllabus - DS & AI.pdfData Science & AI Syllabus - DS & AI.pdf
Data Science & AI Syllabus - DS & AI.pdf
 
Python & machine learning Syllabus - DS & AI.pdf
Python & machine learning Syllabus - DS & AI.pdfPython & machine learning Syllabus - DS & AI.pdf
Python & machine learning Syllabus - DS & AI.pdf
 
Data Science & Artificial intelligence Syllabus - DS & AI.pdf
Data Science & Artificial intelligence Syllabus - DS & AI.pdfData Science & Artificial intelligence Syllabus - DS & AI.pdf
Data Science & Artificial intelligence Syllabus - DS & AI.pdf
 
Data oriented design and c++
Data oriented design and c++Data oriented design and c++
Data oriented design and c++
 
Balancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem FormulationBalancing Infrastructure with Optimization and Problem Formulation
Balancing Infrastructure with Optimization and Problem Formulation
 
Refactor your specs! Øredev 2013
Refactor your specs! Øredev 2013Refactor your specs! Øredev 2013
Refactor your specs! Øredev 2013
 
What's new in Redis v3.2
What's new in Redis v3.2What's new in Redis v3.2
What's new in Redis v3.2
 
Agile 2012 Simple Design Applied
Agile 2012 Simple Design AppliedAgile 2012 Simple Design Applied
Agile 2012 Simple Design Applied
 
Simple design.published
Simple design.publishedSimple design.published
Simple design.published
 
Basic of python for data analysis
Basic of python for data analysisBasic of python for data analysis
Basic of python for data analysis
 
Letswift19-clean-architecture
Letswift19-clean-architectureLetswift19-clean-architecture
Letswift19-clean-architecture
 
Dataiku hadoop summit - semi-supervised learning with hadoop for understand...
Dataiku   hadoop summit - semi-supervised learning with hadoop for understand...Dataiku   hadoop summit - semi-supervised learning with hadoop for understand...
Dataiku hadoop summit - semi-supervised learning with hadoop for understand...
 

More from Rakuten Group, Inc.

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
Rakuten Group, Inc.
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
Rakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
Rakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
Rakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
Rakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
Rakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Rakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
Rakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
Rakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
Rakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
Rakuten Group, Inc.
 

More from Rakuten Group, Inc. (20)

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
 

Recently uploaded

The Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - CoatueThe Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - Coatue
Razin Mustafiz
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
ssuser1915fe1
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
Arpan Buwa
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
FIDO Alliance
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Zilliz
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
alexjohnson7307
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
bhumivarma35300
 
Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024
siddu769252
 
Zaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdfZaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdf
AmandaCheung15
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
Bhajan Mehta
 
Retrieval Augmented Generation Evaluation with Ragas
Retrieval Augmented Generation Evaluation with RagasRetrieval Augmented Generation Evaluation with Ragas
Retrieval Augmented Generation Evaluation with Ragas
Zilliz
 
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptxUse Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
SynapseIndia
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
Baishakhi Ray
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
shyamraj55
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
Enterprise Knowledge
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
kk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdfkk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdf
KIRAN KV
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
shanihomely
 

Recently uploaded (20)

The Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - CoatueThe Path to General-Purpose Robots - Coatue
The Path to General-Purpose Robots - Coatue
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
Feature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptxFeature sql server terbaru performance.pptx
Feature sql server terbaru performance.pptx
 
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and CitiesThe Impact of the Internet of Things (IoT) on Smart Homes and Cities
The Impact of the Internet of Things (IoT) on Smart Homes and Cities
 
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
UX Webinar Series: Drive Revenue and Decrease Costs with Passkeys for Consume...
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
 
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
High Profile Girls call Service Pune 000XX00000 Provide Best And Top Girl Ser...
 
Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024Generative AI Reasoning Tech Talk - July 2024
Generative AI Reasoning Tech Talk - July 2024
 
Zaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdfZaitechno Handheld Raman Spectrometer.pdf
Zaitechno Handheld Raman Spectrometer.pdf
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
 
Retrieval Augmented Generation Evaluation with Ragas
Retrieval Augmented Generation Evaluation with RagasRetrieval Augmented Generation Evaluation with Ragas
Retrieval Augmented Generation Evaluation with Ragas
 
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptxUse Cases & Benefits of RPA in Manufacturing in 2024.pptx
Use Cases & Benefits of RPA in Manufacturing in 2024.pptx
 
Semantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software DevelopmentSemantic-Aware Code Model: Elevating the Future of Software Development
Semantic-Aware Code Model: Elevating the Future of Software Development
 
Integrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecaseIntegrating Kafka with MuleSoft 4 and usecase
Integrating Kafka with MuleSoft 4 and usecase
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
Improving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning ContentImproving Learning Content Efficiency with Reusable Learning Content
Improving Learning Content Efficiency with Reusable Learning Content
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
kk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdfkk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdf
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
 

Rakuten Data

  • 1. Rakuten Data 会場:C 15:00-15:45 2010.10.16
  • 2. Today’s Theme What’s going on with Rakuten Data? +
  • 3. Agenda Outside Rakuten Web API Data Release for Academia Inside Rakuten Data Integration by RDF Using LOD
  • 5. Outside Rakuten Web API
  • 7. API for golf courses
  • 8. Outside Rakuten Data Release for Academia
  • 9. Introduction Objective Contribution to the research community through data distribution Open innovation for society of co- existence Distribution Through IDR/NII and ALAGIN/NICT (free of charge) Only Academia for research purpose
  • 10. Sample Data ( Rakuten Ichiba Items Data ) Rakuten Ichiba Items Data Column Sample shopurl melissa itemid 838223 name 【ジェットレーベル】JET LABELヘンリーネック着心地良く伸びる生地DESIGN フリル カットソー caption 素材の上質さ・綺麗なシルエットに定評のあるブランドです。最近では新宿 伊勢丹などをはじめ有名百 貨店などでも、取り扱われるなど赤丸急上昇で す!ベーシックでありながら、すこしだけ捻りのあるデザインなので ON/OFFコーディネイトに最適です。(職場・通勤にも、休日のジーニングス タイルにも対応できます。)着心地最高! 上質で肌触りが良く、スパンが効 いてよく伸びる生地です。 url http://www.rakuten.co.jp/melissa/931794/921910/ img_small http://image.rakuten.co.jp/wshop/data/ws-mall- img/melissa/img64/img10532573746.jpeg img_mideu http://image.rakuten.co.jp/wshop/data/ws-mall- m img/melissa/img128/img10532573746.jpeg price 7875 genreid 403862
  • 11. Sample Data ( Travel Review Data ) User Evaluation User Review Hotel Master Column Sample Column Sample Column Sample post_no 7136071 hotel_id 28604 hotel_id 清里ゲス… screen_name ゆかっち… user_post 初めて利… hotel_name ロイヤル… purpose その他 post_no 6525824 company 家族 category 感情・情報 Hotel Evaluation place_point 4 plan_id 365683 Column Sample room_point 4 plan_title 朝食付き… hotel id 1485 meal_point 0 room 2 place_point 3.99 _category room_point 3.37 bath_point 4 room_name プレミア… meal_p… 4.23 services_p… 3 facility_point 3 hotel_ スカイス… bath_p… 3.34 comment total_point 4 services_p 3.74 facility_p… 3.45 total_point 3.85 # of post 168
  • 12. Sample Data ( Golf Course Data) Golf Courses Courses Detail User Reviews Column Sample Column Sample Column Sample g_id 1684 c_id 5570 voice_id 535770 g_name 日向山… g_no 1 c_id 1148 postal1 398 g_id 1407 screen name いのA addr 大町市 c_name OUT usecnt 4 tel1 261 par1 4 general_point 3 open_date 1974/8/1 par2 3 cp_point 3 facility 北アル… par_all 35 staff_point 4 comment GOR… h_point1 7 course_point 4 shoes 2 h_point2 15 meal_point 5 dress 短ズボ… exp1 短い距… club_point 2 holiday 冬季 exp2 グリー… q_subject 味があ… pars 72 q_data やはり… rate 70.9 play_date 2009/5/2 … … … …
  • 14. RDF rdf:type yago: Rakuten CompanyOfJapan
  • 15. Inside Rakuten Data Integration
  • 16. How do we integrate data? Complicated Schemas ?
  • 17. RDF Data Store is better RDF Small Experiment in Data Store Rakuten
  • 18. Inside Rakuten Using LOD
  • 19. Use LOD ! us e Rakuten
  • 20. Inside DBpedia RDF Data Store Wikipedia
  • 21. DBpedia Sample - Query All soccer players, who played as goalkeeper for a club that has a stadium with more than 40,000 seats and who are born in a country with more than 10 million inhabitants
  • 22. DBpedia Sample - Query & Result From Rakuten Ichiba
  • 23. Problems on using LOD in Japan No Japanese version DBpedia Less LOD in Japan
  • 24. Created DBpedia-like data by ourselves (Its in Japanese!) Solr + RDF Store = Hybrid
  • 25. Linking by using LOD Rakuten Rakuten EntameNa Books vi 遥か/2009/GReeeeN
  • 27. 2 keywords Semantic Web Technology Open Innovation

Editor's Notes

  1. 自己紹介で笑いをとる
  2. Web が Web of Documents から Web of Data にシフトしていくという予想の中で、楽天がデータに対してどう取り組んでいるのかの紹介
  3. 楽天は、Web API があり、一部の楽天のデータには API 経由でアクセスできるようになっていますよ. SPARQL とかでは、アクセスできないけど.
  4. 最近では、ゴルフコースなども API 経由で取得できるようになっているんだよ!
  5. アカデミアに対しては、Web 上から取得できるデータを、まとめた形でわたしています. オープンイノベーションですよ.
  6. こんなの
  7. こんなの
  8. こんなの
  9. データインテグレーションをする時に、1つのRDB スキーマに押し込めるのは辛いよねぇ.
  10. RDF Data Store は柔軟で、このような用途にすごく向いています . 楽天でも、まだまだ小さいですが、一部、このような取り組みは始まっていて、今は Sesame というオープンソースを使っています .
  11. LOD と Rakuten のデータをつなげれば、面白いことがいっぱい出来そうですよね. つなげる先は、DBpedia が無難ですよね.
  12. DBpedia は、こんなの. Wikipedia の Infobox を構造化データに変化して、それにアクセスできるようになっている
  13. DBpedia に載っているサンプルです . DBpedia は、こんなクエリにも対応しているのです
  14. DBpedia 上のサンプルです . もし、楽天市場が DBpedia とつながっていたら、こんなフィギュアも見つかるのですよ .
  15. DBpedia 日本語版を内部でつくっていました .
  16. こんな感じで、作品と商品がつながったりします .
  17. キーワードは 3 つです .