SlideShare a Scribd company logo

楽天のECにおけるAI技術の活用

Rakuten Group, Inc.
Rakuten Group, Inc.
Rakuten Group, Inc.Rakuten Group, Inc.

□Author Masaya Mori, Global Head of Rakuten Institute of Technology, Executive Officer, Rakuten Inc. 森正弥 楽天株式会社 執行役員 兼 楽天技術研究所代表 □Description そもそもなぜ人工知能(AI)をビジネスで活用する必要があるのかの視点に基づいて、AI活用戦略について述べた講演の資料です。

楽天のECにおけるAI技術の活用

1 of 49
Download to read offline
森 正弥
楽天株式会社 執行役員
楽天技術研究所 代表 http://rit.rakuten.co.jp/
「人工知能ビジネス活用研究会 第三期」
楽天のECにおけるAI技術の活用
New Blockchain Capability
Bringing Blockchain computational power to AI
 Digital Assets & Value Transfer
 Smart Contracts
 Autonomous Operations
 P2P Sharing Economy
 Identity & Reputation Systems
 Supply Chain Optimization
まずはお約束
• 人工知能(AI)とは
– 人間の脳が行う知的な作業をコンピュータで模倣したソフト
ウェアやシステムのこと
– 具体的には,環境や物体の認識,人間の使う自然言語の
理解や論理的な推論,経験からの学習を行うコンピュータ
プログラムのこと
– AIを実現する為の技術は細分化
• 自然言語処理,画像処理,音声認識,機械学習,ロボティクス等
– ビッグデータの潮流の中,取得可能なデータ量や活用機
会が増え,データを有効に活用する為のAI技術も注目
次に。そして、楽天も。
• ビッグデータとは
(ビジネスのコンテキストで)
– 各種事業や身の回りの様々な技術のコンピュータ化,コンテンツのデ
ジタル化に伴い増大しているデータの活用
– 構造化データ + 非構造・非定型データの流入
– リアルタイム性が高いデータ,ログ,クエリ,センサやモバイル機器
が生成するデータ,そして音声や動画のマルチメディアデータをも含む
• Ex. M2M, IoT, Industrial 4.0
– 近年,大量データ活用事例が共有
– 楽天も
• 楽天株式会社 執行役員
• 楽天技術研究所 代表
– 2005年設立
– 世界5拠点 100名以上
– 20国籍、博士・IPA未踏出身者
• AI,IoTに加えBlockchainも
•The article for the journal of JSAI vol.30
Intro: 森 正弥
http://rit.rakuten.co.jp/
楽天技術研究所: Rakuten Institute of Technology
• 世界5拠点。100名以上。事業とは独立した戦略的R&D組織。
• 研究者の問題意識・関心・やりたいに基づいた研究の推進。
• Bring new wind from Academia to Rakuten.
Tokyo
NY
Singapore
Paris
Boston
http://rit.rakuten.co.jp/

Recommended

楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用Rakuten Group, Inc.
 
FastAPIを使って 機械学習モデルをapi化してみた
FastAPIを使って 機械学習モデルをapi化してみたFastAPIを使って 機械学習モデルをapi化してみた
FastAPIを使って 機械学習モデルをapi化してみたSho Tanaka
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPTnlab_utokyo
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIShota Imai
 
ChatGPT の現状理解と 2023年7月版 LLM情報アップデート
ChatGPT の現状理解と 2023年7月版 LLM情報アップデートChatGPT の現状理解と 2023年7月版 LLM情報アップデート
ChatGPT の現状理解と 2023年7月版 LLM情報アップデートSatoshi Kume
 

More Related Content

What's hot

機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門michiaki ito
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システムjoisino
 
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論Nobukazu Yoshioka
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives
[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives
[DL輪読会]Deep Learning based Recommender System: A Survey and New PerspectivesDeep Learning JP
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方Shun Nukui
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
 
AI初心者だった私が E資格取得して専門職に転職した話
AI初心者だった私が E資格取得して専門職に転職した話AI初心者だった私が E資格取得して専門職に転職した話
AI初心者だった私が E資格取得して専門職に転職した話川上 詩織
 
機械学習システムの33のアーキテクチャパターンおよびデザインパターン
機械学習システムの33のアーキテクチャパターンおよびデザインパターン機械学習システムの33のアーキテクチャパターンおよびデザインパターン
機械学習システムの33のアーキテクチャパターンおよびデザインパターンHironori Washizaki
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門KnowledgeGraph
 
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...Deep Learning JP
 
Real-time personalized recommendation using embedding
Real-time personalized recommendation using embeddingReal-time personalized recommendation using embedding
Real-time personalized recommendation using embeddingRecruit Lifestyle Co., Ltd.
 
Data-centricなML開発
Data-centricなML開発Data-centricなML開発
Data-centricなML開発Takeshi Suzuki
 
機械学習システム開発案件の事例紹介
機械学習システム開発案件の事例紹介機械学習システム開発案件の事例紹介
機械学習システム開発案件の事例紹介BrainPad Inc.
 
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)ARISE analytics
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用Hiroyuki Masuda
 

What's hot (20)

AdaFace(CVPR2022)
AdaFace(CVPR2022)AdaFace(CVPR2022)
AdaFace(CVPR2022)
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システム
 
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論
AIシステムの要求とプロジェクトマネジメント-前半:機械学習工学概論
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives
[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives
[DL輪読会]Deep Learning based Recommender System: A Survey and New Perspectives
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
AI初心者だった私が E資格取得して専門職に転職した話
AI初心者だった私が E資格取得して専門職に転職した話AI初心者だった私が E資格取得して専門職に転職した話
AI初心者だった私が E資格取得して専門職に転職した話
 
機械学習システムの33のアーキテクチャパターンおよびデザインパターン
機械学習システムの33のアーキテクチャパターンおよびデザインパターン機械学習システムの33のアーキテクチャパターンおよびデザインパターン
機械学習システムの33のアーキテクチャパターンおよびデザインパターン
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門
 
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
 
Real-time personalized recommendation using embedding
Real-time personalized recommendation using embeddingReal-time personalized recommendation using embedding
Real-time personalized recommendation using embedding
 
Data-centricなML開発
Data-centricなML開発Data-centricなML開発
Data-centricなML開発
 
機械学習システム開発案件の事例紹介
機械学習システム開発案件の事例紹介機械学習システム開発案件の事例紹介
機械学習システム開発案件の事例紹介
 
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
【論文読み会】Alias-Free Generative Adversarial Networks(StyleGAN3)
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用
 

Similar to 楽天のECにおけるAI技術の活用

サイバーエージェントにおける計算社会科学
サイバーエージェントにおける計算社会科学サイバーエージェントにおける計算社会科学
サイバーエージェントにおける計算社会科学Masanori Takano
 
河野ゼミ研究紹介20180702
河野ゼミ研究紹介20180702河野ゼミ研究紹介20180702
河野ゼミ研究紹介20180702義広 河野
 
ビッグデータ時代のアカデミッククラウド
ビッグデータ時代のアカデミッククラウドビッグデータ時代のアカデミッククラウド
ビッグデータ時代のアカデミッククラウドMasaharu Munetomo
 
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見ソーシャルビッグデータ・オープンデータによる社会構造変化の発見
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見Masanori Takano
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)Yuya Unno
 
WebにおけるHuman Dynamics 武内慎
WebにおけるHuman Dynamics    武内慎WebにおけるHuman Dynamics    武内慎
WebにおけるHuman Dynamics 武内慎cyberagent
 
インターネットで学習すべき事柄について
インターネットで学習すべき事柄についてインターネットで学習すべき事柄について
インターネットで学習すべき事柄についてTatsuya (Saeki) Takiguchi
 
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーション
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーションいじめられた子供を支援する 仮想世界ピグパーティの コミュニケーション
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーションcyberagent
 
HCI分野の紹介と最新研究
HCI分野の紹介と最新研究HCI分野の紹介と最新研究
HCI分野の紹介と最新研究ota42y
 
Data scientist casual talk in 白金台
Data scientist casual talk in 白金台Data scientist casual talk in 白金台
Data scientist casual talk in 白金台Hiroko Onari
 
S3fire概要020112 it forum印刷用
S3fire概要020112 it forum印刷用S3fire概要020112 it forum印刷用
S3fire概要020112 it forum印刷用Yuriko Sawatani
 
横幹連合サービス科学
横幹連合サービス科学横幹連合サービス科学
横幹連合サービス科学Yuriko Sawatani
 
河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016義広 河野
 
研究支援に係るアカデミッククラウド システムの調査検討
研究支援に係るアカデミッククラウド システムの調査検討研究支援に係るアカデミッククラウド システムの調査検討
研究支援に係るアカデミッククラウド システムの調査検討Masaharu Munetomo
 
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例として
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例としてこれからの学術デジタル・アーカイブ SAT大蔵経DBを事例として
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例としてNagasaki Kiyonori
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98thYoichi Motomura
 
2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料義広 河野
 

Similar to 楽天のECにおけるAI技術の活用 (20)

サイバーエージェントにおける計算社会科学
サイバーエージェントにおける計算社会科学サイバーエージェントにおける計算社会科学
サイバーエージェントにおける計算社会科学
 
河野ゼミ研究紹介20180702
河野ゼミ研究紹介20180702河野ゼミ研究紹介20180702
河野ゼミ研究紹介20180702
 
ビッグデータ時代のアカデミッククラウド
ビッグデータ時代のアカデミッククラウドビッグデータ時代のアカデミッククラウド
ビッグデータ時代のアカデミッククラウド
 
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見ソーシャルビッグデータ・オープンデータによる社会構造変化の発見
ソーシャルビッグデータ・オープンデータによる社会構造変化の発見
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
 
kaneko202304.pptx
kaneko202304.pptxkaneko202304.pptx
kaneko202304.pptx
 
WebにおけるHuman Dynamics 武内慎
WebにおけるHuman Dynamics    武内慎WebにおけるHuman Dynamics    武内慎
WebにおけるHuman Dynamics 武内慎
 
Mitou qwgc
Mitou qwgcMitou qwgc
Mitou qwgc
 
インターネットで学習すべき事柄について
インターネットで学習すべき事柄についてインターネットで学習すべき事柄について
インターネットで学習すべき事柄について
 
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーション
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーションいじめられた子供を支援する 仮想世界ピグパーティの コミュニケーション
いじめられた子供を支援する 仮想世界ピグパーティの コミュニケーション
 
HCI分野の紹介と最新研究
HCI分野の紹介と最新研究HCI分野の紹介と最新研究
HCI分野の紹介と最新研究
 
Data scientist casual talk in 白金台
Data scientist casual talk in 白金台Data scientist casual talk in 白金台
Data scientist casual talk in 白金台
 
S3fire概要020112 it forum印刷用
S3fire概要020112 it forum印刷用S3fire概要020112 it forum印刷用
S3fire概要020112 it forum印刷用
 
横幹連合サービス科学
横幹連合サービス科学横幹連合サービス科学
横幹連合サービス科学
 
河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016河野ゼミガイダンス資料2016
河野ゼミガイダンス資料2016
 
研究支援に係るアカデミッククラウド システムの調査検討
研究支援に係るアカデミッククラウド システムの調査検討研究支援に係るアカデミッククラウド システムの調査検討
研究支援に係るアカデミッククラウド システムの調査検討
 
T univ
T univT univ
T univ
 
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例として
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例としてこれからの学術デジタル・アーカイブ SAT大蔵経DBを事例として
これからの学術デジタル・アーカイブ SAT大蔵経DBを事例として
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
 
2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料2017年度 河野ゼミ スタートアップ資料
2017年度 河野ゼミ スタートアップ資料
 

More from Rakuten Group, Inc.

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のりRakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Rakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャーRakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfRakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfRakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfRakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technologyRakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャーRakuten Group, Inc.
 
モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側Rakuten Group, Inc.
 

More from Rakuten Group, Inc. (20)

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
 
モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側
 

楽天のECにおけるAI技術の活用