Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
DIAMONDBACK MOTH: ECOLOGY AND
MANAGEMENT; PROBLEMS, PROGRESS,
PROSPECTS
PREPARED BY:
RAKESH KR. MEENA
15MSENT014
SEMINAR -...
www.themegallery.com CONTENTS
1
ECOLOGY OF DBM2
M MANAGEMENT OF DBM3
INTRODUCTION
SUMMARY AND CONCLUSION6
M4 INSECTICIDE R...
INTRODUCTION
ECOLOGY
FEEDING STIMULANTS –
sinigrin and glucobrassicin
0VIPOSITION STIMULANTS
Sinigrin, sinalbin and
glucocheirolin
DBM-HOST PLA...
TRITROPHIC INTERACTIONS
HERBIVORE INDUCED
SEMIOCHEMICALS –
Isothiocyanates, nitriles, dimethyl
trisulfide, terpenes, methy...
NATURAL ENEMY COMPLEX
Diadegma semiclausum Oomyzus sokolowskii
Diadegma insulare Trichogramma chilonis
Diadromus collaris
...
PREDATORS
Coranus sp. Chrysoperla carnea
Componatus sericus
Coleomegilla sp.,
Pheidole sp. Tapinoma melanocephalum
Cattle egret
Yellow wag tail
• High temperature, relative humidity, and heavy rain are important factors
affecting the DBM population (Talekar and Lee,...
MIGRATION >3000Km
(Mackenzie, 1958)
Leaf defoliation from
young diamondback
moth larva
Leaf mines caused by
the first instar larva.
Leaf defoliation from
seco...
CULTURAL CONTROL
CHEMICAL CONTROL
BIOLOGICAL CONTROL
CULTURAL CONTROL
INTERCROPPING
HOST PLANT RESISTANCE
SPRINKLER IRRIGATION
CROP ROTATION
SEX PHEROMONES
TRAP CROPPING
HOST PLANT RESISTANCE
(Kimberly et al., 1989)
SPRINKLER IRRIGATION
Sprinkler irrigation applied for five minutes at dusk on alternate days over
the first three to four ...
BIOLOGICAL CONTROL
Sl
No.
Species Stage References
I. PARASITOIDS
1
2
3
4
5
6
7
8
Trichogramma chilonis Ishii
(Trichogrammatidae )
Trichogram...
II. PREDATORS
1
2
Chrysoperla cornea Stephens (Chrysopidae )
Coranus sp. (Reduvidae : Hemiptera)
Egg &
larva
Larva
Anuradh...
III PATHOGENS
1
2
3
4
5
6
Bacillus thuringiensis var. Kurstaki
Nuclear polyhedrosis virus (NPV))
Granulosis virus (GV)
Pae...
Table 2 : In vitro evaluation of entomopathogenic fungi against third instar
larvae of P. xylostella
(Sajjan, 2006)
BOTANICALS AND ITK
TREATMENTS
Percent egg hatch inhibition (TΧC)
Mean
5% 7.5%
A. calamus 11.74
(20.03)
15.52
(23.19)
13.63
(21.61)
A. squamos...
O. sanctum 15.71
(23.34)
18.60
(25.54)
17.16
(24.44)
R. communis 7.81
(16.22)
12.34
(20.56)
10.08
(18.39)
V. rosea 11.82
(...
Table 4 : In vitro evaluation of plant products and panchagavya against third instar
larvae of P. xylostella.
(Sajjan, 200...
(Sajjan, 2006)
CHEMICAL CONTROL
Chemical Subgroup Insecticides Main Group
Organophosphates Profenophos, Malathion 1
Pyrethroids Deltamethrin, Cypermethrin...
TREATMENTS CONC(%)
Egg mortality
US LS Total
Profenofos 50EC 0.1 45.84 23.42 69.26
Fenvalerate 10EC+Honge oil 0.01+0.2 29....
Methomyl 12.5 L 0.025 10.63 6.31 16.94
Fenvalerate 20EC 0.01 9.41 5.71 15.12
Cypermethrin 10EC 0.005 8.84 4.42 13.76
Sesam...
TREATMENTS CONC (%)
Mortality
24 hr 48hr 72hr
Chlorfenapyr 10SC 0.03 78.60c
(62.48)
92.90abc
(74.58)
96.40ab
(79.10)
Emame...
Profenophos 50 EC 0.1 25.00e
(30.02)
82.10de
(65.00)
85.70c
(67.82)
Spinosad 45 SC 0.009 89.30a
(70.94)
100.00a
(90.05)
10...
INSECTICIDE RESISTANCE
INSECTICIDE
CLASS
COUNTRY MECHANISM
Organophosphates Australia, China, Costa Rica, India, Pakistan,
Philippines, South Afr...
INSECTICIDES COUNTRY MECHANISM
Neriestoxin
analogs
China, India, Taiwan, Nicaragua
Neonicotinoids Malaysia
Bt(kurstaki,
Cr...
INSECTICIDE RESISTANCE MANAGEMENT
IRM
IRM
A
D
B
C
EIPM
RESISTANCE MONITRING
ROTATION OF
INSECICIDES
SYNERGISTSBt-BRASSICAE
India - cabbage IRM stratergy
(http://www.irac-online.org)
(Cao et al., 2002)
Table 9: Evaluation of Broccoli plants with pyramided cry1Ac and cry1C Bt
genes against DBM
SYNERGISTS
Treatments Conc (%) Mortality %
24 hr 48 hr 72 hr
Fenvalerate 20 EC + Sesamum oil 0.01 + 0.2 18.52c 55.56ab 77....
Treatments Conc (%) Mortality %
24 hr 48 hr 72 hr
Detamethrin 2.8 EC + Sesamum
oil
0.0014 + 0.2 22.23c 40.74bc 40.74be
Det...
IPM
Trap cropping
Inter cropping
Botanicals
Natural enemies
Crop rotation
Selective
insecticides
Table 11: Details of IPM modules evaluated for the management of
P. xyllostella
(Shaila, 2007)
Module Details
Module I (Re...
Table 12: Effect of IPM modules on P. xylostella population in cabbage
(Shaila, 2007)
Modules
No. of larvae/plant
15 DAT 3...
SUMMARY
PROSPECTS
GENETICALLY
MODIFIED DBM
PREDATORY FAUNA
Mating Disruption
Bt-BRASSICAE
• Diamondback moth, P. xylostella is one of the most destructive pests of cruciferous
vegetables in the world and has been...
C0NCLUSION
Diamondback.pptx
Diamondback.pptx
Diamondback.pptx
Upcoming SlideShare
Loading in …5
×
Upcoming SlideShare
Diamondback Edgewood Sport Hybrid Bike 2012
Next
Download to read offline and view in fullscreen.

1

Share

Download to read offline

Diamondback.pptx

Download to read offline

DIAMOND BACK MOTH PPT

Related Books

Free with a 30 day trial from Scribd

See all

Diamondback.pptx

  1. 1. DIAMONDBACK MOTH: ECOLOGY AND MANAGEMENT; PROBLEMS, PROGRESS, PROSPECTS PREPARED BY: RAKESH KR. MEENA 15MSENT014 SEMINAR - II
  2. 2. www.themegallery.com CONTENTS 1 ECOLOGY OF DBM2 M MANAGEMENT OF DBM3 INTRODUCTION SUMMARY AND CONCLUSION6 M4 INSECTICIDE RESISTANCE IRM – PROGRESS AND PROSPECTS5
  3. 3. INTRODUCTION
  4. 4. ECOLOGY
  5. 5. FEEDING STIMULANTS – sinigrin and glucobrassicin 0VIPOSITION STIMULANTS Sinigrin, sinalbin and glucocheirolin DBM-HOST PLANT INTERACTIONS (Talekar and Shelton, 1993)
  6. 6. TRITROPHIC INTERACTIONS HERBIVORE INDUCED SEMIOCHEMICALS – Isothiocyanates, nitriles, dimethyl trisulfide, terpenes, methyl salicylate, limonene (Talekar and Shelton, 1993)
  7. 7. NATURAL ENEMY COMPLEX Diadegma semiclausum Oomyzus sokolowskii Diadegma insulare Trichogramma chilonis Diadromus collaris Cotesia plutellae PARASITOIDS
  8. 8. PREDATORS Coranus sp. Chrysoperla carnea Componatus sericus Coleomegilla sp., Pheidole sp. Tapinoma melanocephalum
  9. 9. Cattle egret Yellow wag tail
  10. 10. • High temperature, relative humidity, and heavy rain are important factors affecting the DBM population (Talekar and Lee, 1985) • Maximum humidity and rainfall adversely affected the population of P. xylostella , unfavorable for the immature stages (Ahmad et al ., 2010) • The increased temperatures can lead to the production of more generations per season (Talekar and Shelton ,1993) • Although egg production and larval survival of P. xylostella are inhibited by temperature above 30°C (Yamada and Kawasaki, 1983). ABIOTIC FACTORS
  11. 11. MIGRATION >3000Km (Mackenzie, 1958)
  12. 12. Leaf defoliation from young diamondback moth larva Leaf mines caused by the first instar larva. Leaf defoliation from second instar Complete defoliation
  13. 13. CULTURAL CONTROL CHEMICAL CONTROL BIOLOGICAL CONTROL
  14. 14. CULTURAL CONTROL INTERCROPPING HOST PLANT RESISTANCE SPRINKLER IRRIGATION CROP ROTATION SEX PHEROMONES TRAP CROPPING
  15. 15. HOST PLANT RESISTANCE (Kimberly et al., 1989)
  16. 16. SPRINKLER IRRIGATION Sprinkler irrigation applied for five minutes at dusk on alternate days over the first three to four weeks of starting of dry period in cabbage field have shown significant reduction in the diamondback moth infestation (Talekar et al., 1988)
  17. 17. BIOLOGICAL CONTROL
  18. 18. Sl No. Species Stage References I. PARASITOIDS 1 2 3 4 5 6 7 8 Trichogramma chilonis Ishii (Trichogrammatidae ) Trichogramma armigera Nagaraj Trichogrammatoidea bactrae Nagaraj Cotesia vestalis (=plutellae ) Haliday(Braconidae) Diadegma collaris Graven horst (Ichneumonidae) Diadegma semiclausum Horstmann Oomyzus sokolowskii Kundj (Eulophidae) Brachymeria exacarinata Gahan (Chalcididae) Egg Egg Egg Larva Pupa Larval- Pupal Larval- pupal Pupa Anuradha (1997) Manjunath (1972) Singh and Jalali (1993) Nagarakatti and Jayanth (1982) Chauhan et al. (1997) and Devi and Raj (1995) Chandramohan (1994) Nagarakatti and Jayanth (1982) Cherian and Basheer (1938) Table 1: Natural enemies of P. xylostella in India
  19. 19. II. PREDATORS 1 2 Chrysoperla cornea Stephens (Chrysopidae ) Coranus sp. (Reduvidae : Hemiptera) Egg & larva Larva Anuradha (1997) Anuradha (1997) ANTS 1 2 3 Tapinoma melanocephalum (Formicidae ) Componatus sericus Pheidole sp. Larva Larva Larva Jayarathnam (1977) Jayarathnam (1977) Jayarathnam (1977) BIRDS 1 2 Yellow wag tail (Motacilla flava) Cattle egret (Bulbueus ibis) Larva Larva Jayarathnam (1977) Jayarathnam (1977) Contd…
  20. 20. III PATHOGENS 1 2 3 4 5 6 Bacillus thuringiensis var. Kurstaki Nuclear polyhedrosis virus (NPV)) Granulosis virus (GV) Paecilomyces farinosus (Fungus) Beauveria bassiana (Fungus) Zoophthora radicans (Fungus) Larva Larva Larva Larva Larva Larva Narayan et al. (1970) Anuradha (1997) Rabindra et al. (1996) Anuradha (1997) and Gopalakrishna (1998) Voon et al. (1999) Gopalakrishna (1998) Contd…
  21. 21. Table 2 : In vitro evaluation of entomopathogenic fungi against third instar larvae of P. xylostella (Sajjan, 2006)
  22. 22. BOTANICALS AND ITK
  23. 23. TREATMENTS Percent egg hatch inhibition (TΧC) Mean 5% 7.5% A. calamus 11.74 (20.03) 15.52 (23.19) 13.63 (21.61) A. squamosa 21.54 (27.63) 31.54 (34.15) 26.54 (30.89) A. indica 42.44 (40.64) 60.02 (50.76) 51.23 (45.70) C. inerme 10.76 (19.14) 14.53 (22.40) 12.65 (20.77) L. esculentum 1.04 (3.40) 2.38 (7.24) 1.71 (5.32) M. azedarach 18.60 (25.54) 24.29 (29.52) 21.45 (27.53) Table 3 : Ovicidal action of aqueous plant extracts on egg hatch inhibition of Plutella xylostella (Reena, 2000)
  24. 24. O. sanctum 15.71 (23.34) 18.60 (25.54) 17.16 (24.44) R. communis 7.81 (16.22) 12.34 (20.56) 10.08 (18.39) V. rosea 11.82 (20.10) 20.82 (27.14) 16.32 (23.62) V. negundo 24.27 (29.50) 26.47 (30.95) 25.37 (30.23) Mean 16.58 (22.55) 22.65 (27.14) 19.62 (24.85) Source S.Em± CD (0.05) Treatment (T) 0.78 2.24 Concentration (C) 0.35 1.00 TΧC 1.11 3.16 (Reena, 2000)
  25. 25. Table 4 : In vitro evaluation of plant products and panchagavya against third instar larvae of P. xylostella. (Sajjan, 2006)
  26. 26. (Sajjan, 2006)
  27. 27. CHEMICAL CONTROL
  28. 28. Chemical Subgroup Insecticides Main Group Organophosphates Profenophos, Malathion 1 Pyrethroids Deltamethrin, Cypermethrin, Fenvalerate 3 Avermectins Abamectin 6 Diamides Flubendiamide, Rynaxypyr 28 Thiourea Diafenthiuron 12 Nereistoxin analogues Cartap 4 Spinosyns Spinosad 5 Table 5 : Registered and Commonly Used Insecticides against DBM (http://www.irac-online.org)
  29. 29. TREATMENTS CONC(%) Egg mortality US LS Total Profenofos 50EC 0.1 45.84 23.42 69.26 Fenvalerate 10EC+Honge oil 0.01+0.2 29.21 33.12 62.33 Fenvalerate 10EC+Honge oil 0.01+0.2 34.64 23.12 57.85 Lufenuron 5EC 0.005 29.06 17.53 49.59 Thiodicarb 75WP O.15 19.21 11.60 31.81 Methomyl 40SP 0.08 18.98 10.49 29.47 Polytrin C-44 0.09 15.73 8.36 24.09 Carbosulfan 25EC 0.05 14.81 7.91 2.72 Fipronil 5EC 0.005 12.07 5.53 17.60 Honge oil 0.2 9.12 8.06 17.18 Table 6: OVICIDALACTION OF INSECTICIDES
  30. 30. Methomyl 12.5 L 0.025 10.63 6.31 16.94 Fenvalerate 20EC 0.01 9.41 5.71 15.12 Cypermethrin 10EC 0.005 8.84 4.42 13.76 Sesamum oil 0.2 5.33 4.17 9.50 Methofenozide 22.9 F 0.023 3.37 2.16 5.53 Mean 17.74 11.47 29.32 (Vastad et al., 2004)
  31. 31. TREATMENTS CONC (%) Mortality 24 hr 48hr 72hr Chlorfenapyr 10SC 0.03 78.60c (62.48) 92.90abc (74.58) 96.40ab (79.10) Emamectin benzoate 5SG 0.125 78.60c (62.48) 96.40ab (79.10) 100.00a (90.05) Flubendiamide 480 SC 0.96 85.70b (67.82) 96.40ab (79.10) 100.00a (90.05) Indoxacarb 15.8 EC 0.0145 25.00e (30.02) 89.30bcd (70.94) 92.90abc (74.58) Lambada cyhalothrin 5 EC 0.0025 3.60g (10.94) 67.90f (55.52) 85.70c (67.82) Rynaxypyr 18.5 SC 0.0037 40.00d (39.25) 78.60e (89.30) 85.70c (67.82) Novaluron 10 EC 0.01 40.00d (39.25) 89.30bcd (70.94) 92.90abc (74.58) Table 7: Efficacy of novel insecticides against DBM larvae
  32. 32. Profenophos 50 EC 0.1 25.00e (30.02) 82.10de (65.00) 85.70c (67.82) Spinosad 45 SC 0.009 89.30a (70.94) 100.00a (90.05) 100.00a (90.05) Thiodicarb 75 WP 03.075 25.00e (30.02) 82.10de (65.00) 85.70c (67.82) Delfin WG 200mg/50ml 14.30f (22.23) 85.70cde (67.82) 89.30bc (70.94) Quinalphos 25 EC (Standard check) 0.05 14.30f (22.23) 35.70g (36.71) 57.10d (49.11) S.Em.± 0.29 0.71 0.76 CD at 5% 0.84 2.06 2.23 CV 3.59 4.85 4.89 (Ratnasri, 2012)
  33. 33. INSECTICIDE RESISTANCE
  34. 34. INSECTICIDE CLASS COUNTRY MECHANISM Organophosphates Australia, China, Costa Rica, India, Pakistan, Philippines, South Africa, South Korea MFO, GST, esterase Carbamates China, India, South Africa, Taiwan, South Korea _ Pyrethroids Australia, Brazil, China, India, Japan, Malaysia, New Zealand, Nicaragua, Pakistan, Philippines, South Africa, South Korea, United states MFO, GST, esterase, kdr Indoxacarb Australia, Brazil, United states, Malaysia,Pakistan MFO, GST, esterase Avermectins Brazil, China, Malaysia, Pakistan, Taiwan MFO/esterase Cyclodiene organochlorines India Phenyl pyrazols China, Malaysia, India, Taiwan Spinosyns Malaysia, United states, Pakistan, Taiwan MFO or esterase Table 8 :REPORTS OF DIAMOND BACKMOTH FIELD RESISTANCE TO INSECTICIDES
  35. 35. INSECTICIDES COUNTRY MECHANISM Neriestoxin analogs China, India, Taiwan, Nicaragua Neonicotinoids Malaysia Bt(kurstaki, Cry1A) Central America, China, India, Malaysia, United States, Taiwan, Thailand No binding to gut membrane Bt(aizawai, Cry1C) Malaysia, United States, Taiwan, Thailand Chlorfenapyr China, Taiwan Benzoylureas Brazil, China, Japan, Malaysia, Nicaragua MFO/esterase Diacylhydrazines China Anthranilic diamides China ( Michael et al., 2013)
  36. 36. INSECTICIDE RESISTANCE MANAGEMENT
  37. 37. IRM IRM A D B C EIPM RESISTANCE MONITRING ROTATION OF INSECICIDES SYNERGISTSBt-BRASSICAE
  38. 38. India - cabbage IRM stratergy (http://www.irac-online.org)
  39. 39. (Cao et al., 2002) Table 9: Evaluation of Broccoli plants with pyramided cry1Ac and cry1C Bt genes against DBM
  40. 40. SYNERGISTS Treatments Conc (%) Mortality % 24 hr 48 hr 72 hr Fenvalerate 20 EC + Sesamum oil 0.01 + 0.2 18.52c 55.56ab 77.78a Fenvalerate 20 EC+ honge oil 0.01 + 0.4 71.12a 78.51a 79.63a Fenvalerate 20 EC 0.01 3.72d 33.33bcde 33.33def Cypermethrin 10 EC + sesamum oil 0.005 + 0.2 22.22c 555.56ab 66.67abc Cypermethrin 10 EC + honge oil 0.005 + 0.4 73.72a 75.22a 79.63a Cypermethrin 10 EC 0.005 0.03e 11.12fgh 14.81fgh Table 10: Synergism of Synthetic Pyrethroids by vegetable oils
  41. 41. Treatments Conc (%) Mortality % 24 hr 48 hr 72 hr Detamethrin 2.8 EC + Sesamum oil 0.0014 + 0.2 22.23c 40.74bc 40.74be Detamethrin 2.8 EC + Honge oil 0.0014 + 0.4 51.85ab 77.78a 81.84a Detamethrin 2.8 EC 0.0014 3.72d 11.11fgh 14.81fgh Contd… (Vastrad, 2000)
  42. 42. IPM Trap cropping Inter cropping Botanicals Natural enemies Crop rotation Selective insecticides
  43. 43. Table 11: Details of IPM modules evaluated for the management of P. xyllostella (Shaila, 2007) Module Details Module I (Recommended Package of Practices) Mustard trap crop + 100% RDF, super imposed with sprays of NSKE (5%) at 15 and 25 DAT, malathion (1 ml/l), at 35, 45, 55 and 65 DAT. Module II (IIHR module ) Mustard trap crop + 100% RDF super imposed with sprays of Btk @ 1 g/l from 15 DAT (5-6 sprays at 10 days interval). Module III (Adoptive Module) Mustard trap crop + neem cake 250 kg/ha + 50% RDF super imposed with sprays of Btk (1 g/l) @ 15 and 45 DAT, spinosad (1.2 ml/l) at 25 and 55 DAT, Emamectin benzoate (0.3 g/l) at 35 & 65 DAT. Module IV (Biointensive module) Mustard trap crop + neem cake 250 kg/ha + 50% N and 100% P and K super imposed with sprays of NSKE (5%) at 15 and 45 DAT, T. bactrae (50,000/ha) at 21 DAT, Btk (1.5 ml/l) at 25 & 55 DAT, novaluron (1 ml/l) at 35 and 65 DAT.
  44. 44. Table 12: Effect of IPM modules on P. xylostella population in cabbage (Shaila, 2007) Modules No. of larvae/plant 15 DAT 30 DAT 45 DAT 60 DAT 75 DAT Mean M1 – RPP Module 10.37c (3.30) 7.51d (2.83) 5.73d (2.49) 4.85d (2.31) 3.17d (1.91) 6.33d (2.57) M2 – IIHR Module 10.19c (3.27) 2.84b (1.83) 0.88b (1.17) 0.44b (0.97) 0.27b (0.88) 2.92b (1.87) M3 – Adoptive Module 5.88a (2.50) 1.37a (1.37) 0.21a (0.84) 0.13a (0.79) 0.01a (0.71) 1.52a (1.42) M4 - Bio intensive Module 7.12b (2.76) 4.82c (2.30) 3.17c (1.91) 1.55c (1.42) 0.79c (1.12) 3.49c (2.00)
  45. 45. SUMMARY PROSPECTS GENETICALLY MODIFIED DBM PREDATORY FAUNA Mating Disruption Bt-BRASSICAE
  46. 46. • Diamondback moth, P. xylostella is one of the most destructive pests of cruciferous vegetables in the world and has been reported from at than 128 countries. • High temperature, relative humidity, heavy rain are the important abiotic factors and an a wide range of natural enemies including parasitoids, predators and entomopathogens are the important biotic factors affecting the diamondback moth population. • DBM have developed resistance to organophosphates, Organoclorines, Carbamates, synthetic pyrethroids, newer insecticides and also to the microbial products including Bacillus thuringiensis . • IRM strategy for DBM back moth mainly consist of resistance monitoring, rotation of insecicides, Use of synergists and trangenic plants and IPM • IPM considered to be the most important tool of IRM . SUMMARY
  47. 47. C0NCLUSION
  • PoornaBhavani

    Mar. 21, 2019

DIAMOND BACK MOTH PPT

Views

Total views

1,629

On Slideshare

0

From embeds

0

Number of embeds

0

Actions

Downloads

77

Shares

0

Comments

0

Likes

1

×