Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Wearable Biosensors Presentation


Published on

this was presented as a technical seminar's presentation for final year of B.E.

Published in: Education, Technology, Business

Wearable Biosensors Presentation

  2. 2. INTRODUCTION <ul><li>WEARABLES </li></ul><ul><ul><li>Objects that can be worn on body </li></ul></ul><ul><ul><li>Ex: wrist watches, rings, clothes, spectacles, etc,. </li></ul></ul><ul><li>BIOSENSORS </li></ul><ul><ul><li>Detects analyte </li></ul></ul><ul><ul><ul><li>Biological component </li></ul></ul></ul><ul><ul><ul><li>Physiochemical component </li></ul></ul></ul>WEARABLE BIOSENSORS = WEARABLES + BIOSENSORS
  3. 3. WEARABLE BIOSENSORS Fig 1: Photograph of ring sensor, size of the top board is 0.8 x 0.8 inch.
  4. 4. COMPONENTS <ul><li>Sensitive Biological Element </li></ul><ul><li>Transducer </li></ul><ul><li>Associated Electronics </li></ul>Fig2: Schematic diagram showing main components of a biosensor.
  5. 5. WORKING Fig 3: Working of Biosensor a – analyte b – Interferent c – immobilized biological molecule d – Biospecific immobilization surface e – chemical signal f - transducer g – amplification and control unit h – output of measured analyte
  6. 6. OPERATION <ul><li>WITHOUT BIOSENSORS </li></ul>
  7. 7. OPERATION <ul><li>WITH BIOSENSORS </li></ul>
  8. 8. TYPES OF BIOSENSORS <ul><li>Calorimetric biosensors </li></ul><ul><li>Potentiometric biosensors </li></ul><ul><li>Amperometric biosensors </li></ul><ul><li>Optical biosensors </li></ul><ul><li>Piezo-electric biosensors </li></ul><ul><li>Immunosensors </li></ul>
  9. 9. MANUFACTURING OF BIOSENSORS <ul><li>Making of Base Electrode </li></ul><ul><li>Developing the Transducer for the reaction </li></ul><ul><li>Producing Individual Biosensors </li></ul>
  10. 10. DEVELOPMENTS <ul><li>Ring Sensor </li></ul><ul><li>Smart Shirt </li></ul>
  11. 11. RING SENSOR <ul><li>Monitors heart rate and oxygen saturation </li></ul><ul><li>It is a pulse oximetry sensor. </li></ul><ul><li>Is mainly based on </li></ul><ul><li>optical biosensors. </li></ul><ul><li>CR2032 Battery </li></ul><ul><li>ATmel ATmega 128L </li></ul><ul><li>processor </li></ul>LED’S and photodiodes. Microprocessor (inside) Battery Transmitter
  12. 12. <ul><li>Continuous monitoring. </li></ul><ul><li>Easy to use. </li></ul><ul><li>Reducing hospitalization fee. </li></ul><ul><li>Initial cost is high. </li></ul><ul><li>Limited number of physiological parameters can be monitored </li></ul>Advantages Disadvantages
  13. 13. SMART SHIRT
  14. 14. <ul><li>Easy to wear and take off. </li></ul><ul><li>Continuous monitoring. </li></ul><ul><li>Initial cost is high. </li></ul><ul><li>Battery life is less. </li></ul>Advantages Disadvantages
  15. 15. APPLICATIONS <ul><li>Health Care </li></ul><ul><li>Industrial Process Control </li></ul><ul><ul><li>Online control. </li></ul></ul><ul><ul><li>Offline control (Distant and Local). </li></ul></ul><ul><li>Military Applications </li></ul><ul><ul><li>Continuous </li></ul></ul><ul><li>Environmental Monitoring </li></ul>
  16. 16. ADVANTAGES of WEARABLE BIOSENSORS <ul><li>Rapid continuous control </li></ul><ul><li>Facilitates continuous monitoring </li></ul><ul><li>Detection of transient phenomena </li></ul><ul><li>Easy to use </li></ul><ul><li>Reducing hospitalization fee </li></ul><ul><li>Accurate </li></ul>
  17. 17. <ul><li>Heat sterilization is not possible </li></ul><ul><li>Membrane may be fouled by deposits </li></ul><ul><li>Intoxication of cells present in biosensor </li></ul><ul><li>Changes can put mechanical and chemical stress on the biosensor </li></ul><ul><li>Initial cost is high </li></ul><ul><li>Battery life is less </li></ul>DISADVANTAGES of WEARABLE BIOSENSORS
  18. 18. FUTURE TRENDS <ul><li>Magneto biosensors </li></ul><ul><li>Flame retardants </li></ul><ul><li>Personal care products </li></ul><ul><li>Greater use of home-based monitoring and treatment </li></ul><ul><li>Intelligent control of medication delivery (e.g. insulin delivery based directly on blood glucose levels) </li></ul><ul><li>Greater use of nanotechnology and micro fluidics (“lab on a chip”) </li></ul><ul><li>Implementation using biochemistry, chemistry, thin-film physics, and electronics </li></ul>
  19. 19. CONCLUSION <ul><li>Applied to a restricted area of the potential market </li></ul><ul><li>Limitations: sensitivity, response time, and lifetime </li></ul><ul><li>Immobilization techniques nanotechnology, miniaturization, and multisensor </li></ul><ul><li>Improvement in the affinity, specificity, and mass production of the molecular recognition components </li></ul><ul><li>Development of advanced receptors and molecular recognition elements </li></ul>
  20. 20. REFERENCES <ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul>