Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Biorremediación: aplicación de microorganismos externos
Índice del documentoPrefacio............................................................................................31...
PrefacioEste informe se elabora con el objetivo de presentar a Bioemprende un informe sobre el estado del arteen biorremed...
Definición del objeto de la búsqueda para la recuperación deinformación:    ● Búsqueda de artículos relacionados con el te...
1. IntroducciónEl término biorremediación es empleado para referirse al conjunto de técnicas utilizadas para larestauració...
2. ProyectosEl siguiente listado recoge tanto proyectos de ámbito nacional como europeo.Dentro del ámbito europeo, estos p...
Soil remediation technique for in situ cleaning of soils contaminated withheavy hydrocarbons mixtures (SORBENT)Organizació...
3. Artículos     En la presente sección se recoge un listado de artículos de investigación publicados en los últimoscuatro...
2010A salt tolerant Enterobacter cloacae mutant for bioaugmentation ofpetroleum- and salt-contaminated soil     Autor: X. ...
initial concentrations of citrate. For ground water a first order kinetics with respect to              arsenic concentrat...
wastewater was purified as one of the applications of the bioaugmentation technique.              Results from this study ...
2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic              degradation of glyphosate. The...
Bioremediation of marine sediments contaminated by hydrocarbons:Experimental analysis and kinetic modeling     Autor: F. B...
sites contaminated with phenanthrene alone or co-contaminated with low molecular               weight PAHs and with cadmiu...
(HACH) for 20 days, using microorganisms pre-selected through enrichment. Although               the biodegradation usuall...
Characterization of a fenpropathrin-degrading strain and construction of agenetically engineered microorganism for simulta...
Construction of a genetically engineered microorganism with hightolerance to arsenite and strong arsenite oxidative abilit...
Genetically engineered oil-eating microbes for bioremediation: Prospectsand regulatory challenges      Autor: O. C. Ezezik...
This is the first report about actinomycetes isolated from an illegal storage of              organochlorine pesticide in ...
Microbial communities involved in the bioremediation of an agedrecalcitrant hydrocarbon polluted soil by using organic ame...
degradation of CCl4 at contaminated sites and perspectives for future developments are               discussed.     http:/...
benzo[a]pyrene by isolated thermophilic microorganism. The BUM strain was further              tested for its ability in a...
Synthesis and Utilization of E. coli-Encapsulated PEG-Based MicrodropletUsing a Microfluidic Chip for Biological Applicati...
no biosurfactant addition, increased the total degradation of phenanthrene 30% more         than liquid systems with only ...
2009Biodegradation of Stored jet Fuel by a Nocardia sp. Isolated fromContaminated Soil     Autor: E. de Barros Gomes, A. U...
alone proved to be capable for biological treatment of a real case study of a vegetable              pickled wastewater co...
Bioremediation of soil heavily contaminated with crude oil and itsproducts: Composition of the microbial consortium     Au...
Isolation and characterization of an SDS-degrading Klebsiella oxytoca      Autor: M.Y. Shukor, W.S.W. Husin, M.F.A. Rahman...
certain period of time, most probably due to an efflux transport mechanism. It was further             concluded that the ...
Fuente: World Journal of Microbiology and Biotechnology, Volume 25, Issue 9, Pages 1539-1546     Resumen:              Syn...
2008Adaptive and cross resistance                     to    cadmium(II)         and      zinc(II)     byPseudomonas aerugi...
ammonia-nitrogen was 22-50 mg/L, the ratio of VFA to NH3 was 15.29-23.44 and pH              was 5.24-6.00. These results ...
of biological preparation. It has been demonstrated that the use of the biological              preparation containing emu...
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Informe de vigilancia biorremediación (2)
Upcoming SlideShare
Loading in …5
×

Informe de vigilancia biorremediación (2)

2,409 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Informe de vigilancia biorremediación (2)

  1. 1. Biorremediación: aplicación de microorganismos externos
  2. 2. Índice del documentoPrefacio............................................................................................31. Introducción................................................................................52. Proyectos.....................................................................................63. Artículos.......................................................................................84. Patentes.....................................................................................455. Tesis...........................................................................................666. Oferta y demanda tecnológica.................................................707. Socios........................................................................................728. Otros recursos..........................................................................75Índice de ilustraciones1. Figura 1......................................................................................452. Figura 2......................................................................................46 2
  3. 3. PrefacioEste informe se elabora con el objetivo de presentar a Bioemprende un informe sobre el estado del arteen biorremediación: aplicación de microorganismos externosLas informaciones que se relacionan en este documento tienen carácter referencial. Si desea eltexto completo de cualquiera de ellas, puede solicitarlo al servicio de recuperación dedocumentos: se dirija al contacto técnico que figura en la portada de este informe indicando eltítulo(*s) o referencia(*s) se se indican. 3
  4. 4. Definición del objeto de la búsqueda para la recuperación deinformación: ● Búsqueda de artículos relacionados con el tema ● Proyectos que recogen las recientes innovaciones tanto de empresas como de centros tecnológicos ● Patentes que pueden ser de aplicación en el tema de estudioPara delimitar el objeto de la búsqueda de información, se definió el ámbito terminológico mediante laextracción de los identificadores en lenguaje natural: ● [ES] biorremediación, biotratamiento, biorrecuperación, biodegradación, recuperación de suelos.Los identificadores fueron complementados con la selección de tener controlados multilíngües, sinónimosy complementarios, utilizando la herramienta IATE. Esta primera acotación resultó en la elección de lossiguientes términos: ● [EN] bioremediation, biotreatment, bioreclamation, biorecovery, biodegradation, soil recovery, land reclamationResultando el análisis anterior en la cadena de interrogación (query) genérica: bioremediation or bioreclamationLa query genérica fue adaptada a las características de la sintaxis y limitaciones en la busca de cadafuente de información utilizada, dirigido a obtener los mejores resultados en cada caso.Definición de las fuentes principales de información especializada:La búsqueda se hizo en bases de datos especializadas como Web of Science perteneciente a Web ofKnowledge, Cordis entre otras. 4
  5. 5. 1. IntroducciónEl término biorremediación es empleado para referirse al conjunto de técnicas utilizadas para larestauración de ambientes contaminados usando seres vivos.Las técnicas de biorremediación se pueden clasificar en tres grandes tipos:-Degradación enzimática-Fitorremediación-Remediación microbiana1. Degradación enzimáticaConsiste en el empleo de enzimas en el área contaminada con el objetivo de degradar las sustanciascontaminantes. Dichas enzimas son producidas a escala industrial utilizando a bacterias que las generannaturalmente o por bacterias genéticamente modificadas2. FitorremediaciónSe basa en la utilización de plantas en la zona contaminada aprovechando su capacidad para absorber oacumular las sustancias nocivas.3. Remediación microbianaUso sobre el área contaminada de microorganismos que degradan las sustancias contaminantes. Losmicroorganismos utilizados en este proceso pueden estar presentes en el área contaminada o serexógenos a la misma.En este informe nos vamos a centrar en las técnicas de remediación microbianas usandomicroorganismos externos. 5
  6. 6. 2. ProyectosEl siguiente listado recoge tanto proyectos de ámbito nacional como europeo.Dentro del ámbito europeo, estos proyectos pertenecen al Séptimo Programa Marco de Investigación yDesarrollo tecnológico (7PM) que agrupa todas las iniciativas comunitarias en materia de investigación.La búsqueda se hizo en Cordis que es el portal oficial del 7PM.En el ámbito nacional hay tanto proyectos del Plan Nacional de I+D+i como del Plan Galego de I+D+i(Incite 2006-2010).Los proyectos se muestran ordenados alfabéticamente:Descontaminación microbiológica de fosfoyesos contaminados poruranio y cadmioOrganismo: Universidad de GranadaProyectos de Investigación Fundamental no orientada 2010.Desenvolvemento dun protocolo para a aplicación de técnicas dedescontaminación de solos "in situ" na Comunidade GalegaSolicitante: Novotec consultores, s.a.INCITE- Programas sectoriais de investigación aplicada, PEME I+D e I+D Suma.Tecnoloxía sectorial:Medio Natural e Desenvolvemento Sustentable (MDS). Convocatoria 2009Mining the genome of p. fluorescens f113 to improve agricultural andbioremediation applications. In silico genomics and functional genomicsapproaches to exploit Pseudomonas in biotechnology (MIGENOF113)Organización: UNIVERSIDAD AUTONOMA DE MADRID7PMhttp://cordis.europa.eu/fetch?CALLER=FP7_PROJ_ES&ACTION=D&DOC=16&CAT=PROJ&QUERY=012cf3d3d603:7e24:571ae70a&RCN=95871 6
  7. 7. Soil remediation technique for in situ cleaning of soils contaminated withheavy hydrocarbons mixtures (SORBENT)Organización: UAB GROTA7PMhttp://cordis.europa.eu/fetch?CALLER=FP7_PROJ_ES&ACTION=D&DOC=12&CAT=PROJ&QUERY=012cf3c40fd5:bcad:5031a325&RCN=91811UPSOIL-Sustainable Soil Upgrading by Developing Cost effective,Biogeochemical Remediation ApproachesOrganización: UNIDAD DE CONSTRUCCION DE LABEIN-TECNALIA7PMhttp://www.upsoil.eu/Using MicroBes for the REgulation of heavy metaL mobiLity at ecosystemand landscape scAle: An integrative approach for soil remediation bygeobiological processes (UMBRELLA)Organización:FRIEDRICH-SCHILLER-UNIVERSITAET JENA7PMhttp://cordis.europa.eu/fetch?CALLER=FP7_PROJ_ES&ACTION=D&DOC=15&CAT=PROJ&QUERY=012cf3c40fd5:bcad:5031a325&RCN=92568UPSOIL-Sustainable Soil Upgrading by Developing Cost effective, Biogeochemical RemediationApproaches 7
  8. 8. 3. Artículos En la presente sección se recoge un listado de artículos de investigación publicados en los últimoscuatro años. Los artículos están ordenados por año y alfabéticamente. 2011Biodegradation of commercial gasoline (24% ethanol added) in liquidmedium by microorganisms isolated from a landfarming site Autor: N.M. Oliveira, F. M. Bento, F. A. O. Camargo, A. J. Knorst, A. Loreiro Dos Santos, T. M. Pizzolato, M. C. R. Peralba Fuente: Journal of Enviromental Science and Health, Part A, Volume 46, Issue 1, Pages 86 - 96 Resumen: Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h. http://www.informaworld.com/smpp/content~content=a929784912~db=all~jumptype=rss 8
  9. 9. 2010A salt tolerant Enterobacter cloacae mutant for bioaugmentation ofpetroleum- and salt-contaminated soil Autor: X. Hua, J. Wang, Z. Wu, H. Zhang, H. Li, X. Xing, Z. Liu Fuente: Biochemical Engineering Journal, Volume 49, Issue 2, Pages 201-206 Resumen: A NaCl-tolerant Enterobacter cloacae variant (MU-1) was obtained by mutagenesis using atmospheric pressure glow discharge (APGD) plasmas. The variant exhibited regular growth behavior in slurry cultivation and reached a cell density of 5.72 × 108 and 6.44 × 108 colony-forming units (CFU/mL) in the presence and absence of 7.5% NaCl, respectively, when crude oil was used as the sole carbon source (crude oil/soil = 1.5%). The total petroleum hydrocarbon (TPH) degradation percentage was 7.94% with mutant MU-1 in the presence of 7.5% NaCl whereas that of the wild-type strain was 3.17%. When cultivated in saline medium, MU-1 showed a slight change in membrane permeability but significant increases in both the K+ concentration inside the cell membrane (from 234.24 to 1422.88 ppm/g dry cell weight in the first 2 h) and the exopolysaccharide (EPS) level outside the membrane (from 1350 to 1825 mg/g dry cell weight). The rapid increase in K+ inside the cell and the simultaneous accumulation of EPS outside the cell may be responsible for maintaining the osmotic balance during saline cultivation, and this could facilitate the microbial growth and TPH degradation of MU-1. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4Y3TXG7- B&_user=10&_coverDate=04%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1585656496&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=103ca0ec5b754b16cc2c94f8c8326099&s earchtype=aBio-Detoxification of Arsenic Laden Ground Water Through a Packed BedColumn of a Continuous Flow Reactor Using Immobilized Cells Autor: P. Bag, P. Bhattacharya, R. Chowdhury Fuente: Soil and Sediment Contamination: An International Journal, Volume 19, Issue 4 , Pages 455 - 466 Resumen: Under the present study arsenic resistant bacterial strain, Rhodococcus equi (JUBTAs02), has been used to remove trivalent arsenic from a simulated aqueous solution of arsenic oxide (As2O3). Batch studies have been conducted to determine the arsenic-intoxicated growth kinetics of the bacteria. The Monod type kinetic parameters like saturation constant KS and maximum specific growth rate μmax have been determined by studying batch mode of growth of microorganisms varying the initial concentration of limiting substrate, i.e. citrate (carbon source), in absence of arsenic ions. The kinetic parameter for intoxicated growth, namely the inhibition constant, Ki, has been determined by varying As3+ concentration for each batch conducted at different 9
  10. 10. initial concentrations of citrate. For ground water a first order kinetics with respect to arsenic concentration has been determined for arsenic uptake rate. The same microorganism has been used in immobilized form to treat simulated water as well as naturally occurring arsenic laden ground water in a continuous packed bed reactor using initial arsenite concentration and inlet flow rate as parameters. A maximum value of arsenite removal efficiency of 95% has been achieved in this process. Deterministic mathematical models capable of explaining the trend of removal of arsenic from simulated and ground water have been developed using the kinetic parameters of intrinsic growth of the microorganism. The simulated results have been compared with the experimental ones satisfactorily. http://www.informaworld.com/smpp/content~content=a923010591~db=all~jumptype=rssBioaugmentation efficiency of diesel degradation by Bacillus pumilusJL(B) and Acinetobacter calcoaceticus LT1 in contaminated soils Autor: C. Singh, J. Lin Fuente: African Journal of Biotechnology , Volume 94, Issue 41, Pages 6881-6888 Resumen: The abilities of diesel-degrading Bacillus pumilus JLB and Acinetobacter calcoaceticus LT1 were tested in contaminated soils. The effect of nutrient supplementation on bioaugmented samples was also examined. The results show that bio-augmentation and biostimulation accelerated significantly (p < 0.05) the diesel degradation in the contaminated loam soil and sea sand. Supplementing fertilizers to the augmented loam samples did not result in a significantly higher degradation rate. Furthermore, A. calcoaceticus LT1 alone failed to stimulate higher degradation rates in sea sand unless further supplementation of fertilizer. The results from environmental scanning electron microscopy demonstrate the population increases, then decreases in augmented samples corresponding to the level of diesel degradation. Fungi-like microorganisms became dominant in contaminated loam soil at the end of the study but not in sea sand. The study shows that it is critical not only to understand the physiology of the inoculum but also how it affects microbial community structure and function before the microorganism being introduced in the contaminated soil. http://www.academicjournals.org/AJB/PDF/pdf2010/11Oct/Singh%20and%20Lin.pdfBiodegradation Potential and Influencing Factors of a SpecialMicroorganism to Treat Petrochemical Wastewater Autor: Q. Zhou, B. Shen Fuente: Petroleum Science and Technology, Volume 28, Issue 2, Pages 135 - 145 Resumen: The objective of this study is to evaluate the potential ability of an active microorganism on the biodegradation of petroleum hydrocarbons in the petrochemical wastewater from Sinopec Shanghai Petroleum and Chemical Company Limited, China. In lab-scale batch experiments, by using this special functional microorganism to treat the pollutant, the 10
  11. 11. wastewater was purified as one of the applications of the bioaugmentation technique. Results from this study showed that the biodegradation was quicker and more effective than the natural and physical degradation. The wastewater was analyzed by gas chromatography/mass spectrometry (GC-MS), and it indicated that the dominant pollutants of the wastewater were petroleum-based normal-alkanes (C15-C30). The concentration of microorganism, aeration time, and temperature of biodegradation all influence the potential biodegradation ability. Meanwhile, the biodegradation capability to biodegrade hydrocarbons by this microorganism is the average removal of total petroleum hydrocarbon and was approximately 85% with chemical oxygen demand about 65%. This study provides a feasible technology for the treatment of hydrocarbon- rich wastewater from petrochemical industries and petroleum refineries. http://www.informaworld.com/smpp/content~content=a917441916~db=all~jumptype=rssBioremediation of crude oil-contaminated soil: Comparison of differentbiostimulation and bioaugmentation treatments Autor: Y. Xu, M. Lu Fuente: Journal of Hazardous Materials, Volume 183, Issues 3-5, Pages 395-401 Resumen: Biostimulation with inorganic fertilizer and bioaugmentation with hydrocarbon utilizing indigenous bacteria were employed as remedial options for 12 weeks in a crude oil- contaminated soil. To promote oil removal, biocarrier for immobilization of indigenous hydrocarbon-degrading bacteria was developed using peanut hull powder. Biodegradation was enhanced with free-living bacterial culture and biocarrier with a total petroleum hydrocarbon removal ranging from 26% to 61% after a 12-week treatment. Oil removal was also enhanced when peanut hull powder was only used as a bulking agent, which accelerated the mass transfer rate of water, oxygen, nutrients and hydrocarbons, and provided nutrition for the microflora. Dehydrogenase activity in soil was remarkably enhanced by the application of carrier material. Metabolites of polycyclic aromatic hydrocarbons were identified by Fourier transform ion cyclotron resonance mass spectrometry. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGF-50J4MM4- C&_user=10&_coverDate=11%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=146c0f65b353ca6deea4eeb7b9cc1391&searchtype=aBioremediation of glyphosate-contaminated soils Autor: I. T. Ernakova, N. I. Kiseleva, T. Shushkova, M. Zharikov, G. A. Zharikov, A. A. Leontievsky Fuente: Applied Microbiology and Biotechnology, Volume 88, Issue 2, Pages 585-594 Resumen: Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B- 11
  12. 12. 2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils. http://www.ncbi.nlm.nih.gov/pubmed/20676632Bioremediation of heavy metals by growing hyperaccumulaor endophyticbacterium Bacillus sp. L14 Autor: H. Guo, S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wan, J. Chen, Y. He Fuente: Bioresource Technology, Volume 101, Issue 22, Pages 8599-8605 Resumen: Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10 mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24 h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10 mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-50H224F- G&_user=10&_coverDate=11%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=18a77047bd6b539bb4a9170837991c82&searchtype=a 12
  13. 13. Bioremediation of marine sediments contaminated by hydrocarbons:Experimental analysis and kinetic modeling Autor: F. Beolchini, L. Rocchetti, F. Regoli, A. Dell’Anno Fuente: Journal of Hazardous Materials, Volume 182, Issues 1-3, Pages 403-407 Resumen: This work deals with bioremediation experiments on harbor sediments contaminated by aliphatic and polycyclic aromatic hydrocarbons (PAHs), investigating the effects of a continuous supply of inorganic nutrients and sand amendments on the kinetics of microbial growth and hydrocarbon degradation. Inorganic nutrients stimulated microbial growth and enhanced the biodegradation of low and high molecular weight hydrocarbons, whereas sand amendment increased only the removal of high molecular weight compounds. The simultaneous addition of inorganic nutrients and sand provided the highest biodegradation (>70% for aliphatic hydrocarbons and 40% for PAHs). A semi-empirical kinetic model was successfully fitted to experimental temporal changes of hydrocarbon residual concentrations and microbial abundances. The estimated values for parameters allowed to calculate a doubling time of 2.9 d and a yield coefficient biomass/hydrocarbons 0.39 g C biomass g-1C hydrocarbons, for the treatment with the highest hydrocarbon biodegradation yield. A comparison between the organic carbon demand and temporal profiles of hydrocarbons residual concentration allowed also to calculate the relative contribution of contaminants to carbon supply, in the range 5–32%. This suggests that C availability in the sediments, influencing prokaryotic metabolism, may have cascade effects on biodegradation rates of hydrocarbons. Even if these findings do not represent a general rule and site-specific studies are needed, the approach used here can be a relevant support tool when designing bioremediation strategies on site. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGF-50BJNV7- 1&_user=10&_coverDate=10%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=73239833b47a07920be394cf93e4e227&searchtype=aBioremediation of polyaromatic hydrocarbon contaminated soils by nativemicroflora and bioaugmentation with Sphingobium chlorophenolicumstrain C3R: A feasibility study in solid- and slurry-phase microcosms Autor: M. Colombo, L. Cavalca, S. Bernasconi, V. Andreoni Fuente: International Biodeterioration & Biodegradation, Article in Press Resumen: The aim of the research was to verify if a Sphingobium chlorophenolicum strain C3R was effective in the degradation of phenanthrene (Ph) in agricultural soil co- contaminated by metals and mixtures of PAHs. The presence of PAHs in mixtures produced interactive effects which could either increase or decrease the utilization rate of Ph by C3R and by the native bacterial microflora. Bioaugmentation significantly improved the biodegradation rate of Ph in the presence of both cadmium and arsenic and PAH mixtures. The augmented C3R strain persisted in inoculated microcosms as monitored by the DGGE analysis and outcompeted some indigenous bacteria. The potential role of the soil bacteria in PAH degradation could be envisaged. The results indicate the applicability of S. chlorophenolicum C3R toward in situ bioremediation of 13
  14. 14. sites contaminated with phenanthrene alone or co-contaminated with low molecular weight PAHs and with cadmium and arsenate. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VG6-51N7C7C- 2&_user=10&_coverDate=12%2F08%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=bb97041431bb3d13217984c403a3c2f8&searchtype=aBioremediation of wastewaters with recalcitrant organic compounds andmetals by aerobic granules Autor: A.M. Maszenan, Y. Liu, W. J. Ng Fuente: Biotechnology Advances, Volume 29, Issue 1, Pages 111-123 Resumen: Compared to activated sludge flocs, aerobic granules have a regular shape, and a compact and dense structure which enhances settleability, higher biomass retention, multi-microbial functions, higher tolerance to toxicity, greater tolerance to shock loading, and relatively low excess sludge production. The potential for improved process efficiency and cost-effectiveness can be attractive when it is applied to both municipal and industrial wastewaters. This review discusses potential applications of aerobic granulation technology in wastewater treatment while drawing attention to relevant findings such as diffusion gradients existing in aerobic granules which help the biomass cope with inhibitory compounds and the ability of granules to continue degradation of inhibitory compounds at extreme acid and alkaline pHs. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4X-516MRBY- 1&_user=10&_coverDate=02%2F28%2F2011&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=b7923f55b3a59275219a677d86acbf72&searchtype=aBTEX biodegradation by bacteria from effluents of petroleum refinery Autor: D. E. Mazzeo, C. E. Levy, D. de F. de Angelis, M. A. Marin-Morales Fuente: The Science of the Total Environment, Volume 408, Issue 20, Pages 4334-4340 Resumen: Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus 14
  15. 15. (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. http://www.ncbi.nlm.nih.gov/pubmed/20655572Characterization of a bacterial strain capable of degrading DDT congenersand its use in bioremediation of contaminated soil Autor: H. Fang, B. Dong, H. Yan, F. Tang, Y. Yu Fuente: Journal of Hazardous Materials, Volume 184, Issues 1-3, Pages 281-289 Resumen: A bacterial strain DDT-6 (D6) capable of utilizing dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE) (DDTs) as its sole carbon and energy source was isolated and identified as Sphingobacterium sp. The degradation of DDTs by strain D6 in mineral salt medium and in field soil was investigated. The half-lives of the degradation of DDTs increased with increasing concentration ranging from 1 to 50 mg L−1. Favorable degradation conditions for DDTs by strain D6 were found to be pH 7.0 and 30 °C. The degradation of DDTs by strain D6 was found to be statistically significantly enhanced (p ≤ 0.05) by the addition of glucose. Based on the metabolites detected, a pathway was proposed for DDT degradation in which it undergoes dechlorination, hydrogenation, dioxygenation, decarboxylation, hydroxylation, and phenyl ring-cleavage reactions to complete the mineralization process. The addition of strain D6 into the contaminated soils was found to statistically significantly enhance (p ≤ 0.05) the degradation of DDTs. The results indicate that the isolate D6 can be used successfully for the removal or detoxification of residues of DDTs in contaminated soil. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGF-50T41PS- 8&_user=10&_coverDate=12%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=4e0ae670c69f4a8e2b85c43782ad48d1&searchtype=a 15
  16. 16. Characterization of a fenpropathrin-degrading strain and construction of agenetically engineered microorganism for simultaneous degradation ofmethyl parathion and fenpropathrin Autor: Y. Hong, J. Zhou, Q. Hong, Q. Wang, J. Jiang, S. Li Fuente: Journal of Environmental Management, Volume 91, Issue 11, Pages 2295-2300 Resumen: A gram-negative fenpropathrin-degrading bacterial strain Sphingobium sp. JQL4-5 was isolated from the wastewater treatment sludge of an insecticide factory. Strain JQL4-5 showed the ability to degrade other pyrethroid insecticides, but it was not able to degrade methyl parathion. To enhance its degrading range of substrate, a methyl parathion hydrolase gene (mpd) was successfully introduced into the chromosome of strain JQL4-5 with a mini-Tn-transposon system. A genetically engineered microorganism (GEM) named JQL4-5-mpd resulted, which was capable of simultaneously degrading methyl parathion and fenpropathrin. Soil treatment results indicated that JQL4-5-mpd is a promising multifunctional bacterium in the bioremediation of multiple pesticide-contaminated environments. http://www.ncbi.nlm.nih.gov/pubmed/20624669Comparative bioremediation potential of four rhizospheric microbialspecies against lindanestar Autor: P.C. Abhilash, S. Srivastava, N. Sing Fuente: Chemosphere, Volume 82, Issue 1, Pages 56-63 Resumen: Four microbial species (Kocuria rhizophila, Microbacterium resistens, Staphylococcus equorum and Staphylococcus cohnii subspecies urealyticus) were isolated from the rhizospheric zone of selected plants growing in a lindane contaminated environment and acclimatized in lindane spiked media (5–100 μg mL−1). The isolated species were inoculated with soil containing 5, 50 and 100 mg kg−1 of lindane and incubated at room temperature. Soil samples were collected periodically to evaluate the microbial dissipation kinetics, dissipation rate, residual lindane concentration and microbial biomass carbon (MBC). There was a marked difference (p < 0.05) in the MBC content and lindane dissipation rate of microbial isolates cultured in three different lindane concentrations. Further, the dissipation rate tended to decrease with increasing lindane concentrations. After 45 d, the residual lindane concentrations in three different spiked soils were reduced to 0%, 41% and 33%, respectively. Among the four species, S. cohnii subspecies urealyticus exhibited maximum dissipation (41.65 mg kg−1) and can be exploited for the in situ remediation of low to medium level lindane contaminated soils. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V74-51C9PG1- 3&_user=10&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=9ff326e65e53ac16b2f169e08f167b04&searchtype=a 16
  17. 17. Construction of a genetically engineered microorganism with hightolerance to arsenite and strong arsenite oxidative ability Autor: C. Yang, l. Xu, L. Yan, Y. Xu Fuente: Journal of Environmental Science and Health, part A: Toxic/hazardous substances and environmental engineering, Voluem 45, Issue 6, Pages 732-737 Resumen: Genetically engineered microorganisms (GEMs) have shown great potential for use in environmental bioremediation. In this study, the TTHB128 and TTHB127 genes, which encode the small and large subunits of arsentie oxidase in Thermus thermophilus HB8, respectively, were cloned into the broad-host-range vector pBBR1MCS-5 to produce the recombinant plasmid, TTHB127-pBBR1MCS-5-TTHB128. This resulted in successful construction of a GEM with high tolerance to arsenite and strong arsenite oxidative ability. Culture of the GEM in media containing arsenite for 28 h resulted in 87.6% of the arsenite being oxidized. Overall, the oxidative ability of the GEM was much stronger than that of the wild type host strain. Gentamicin was necessary to maintain the stability of the recombinant plasmid, TTHB127-pBBR1MCS-5-TTHB128, in the GEM. The oxidative ability of the GEM remained unchanged when it was grown in medium containing gentamicin (60 mg/L) for 30 growth cycles, after which its activity gradually decreased. http://www.ncbi.nlm.nih.gov/pubmed/20390921Evolution of bacterial community during bioremediation of PAHs in a coaltar contaminated soil Autor: C. Lors, A. Ryngaert, F. Périé, L. Diels, D. Damidot Fuente: Chemosphere, Voluem 81, Issue 10, Pages 1263-1271 Resumen: The monitoring of a windrow treatment applied to soil contaminated by mostly 2-, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 16S rRNA PCR–DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82% respectively). This result was associated with the activity of bacterial PAH- degraders belonging mainly to the Gamma-proteobacteria, in particular, the Enterobacteria and Pseudomonas genera, which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely, other species, like the Beta-proteobacteria, were detected after 3 months, when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus, presence of the Beta-proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH-contaminated soil. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V74-5172K72- 1&_user=10&_coverDate=11%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=28791308a39b846e7d8cc2038399f468&searchtype=a 17
  18. 18. Genetically engineered oil-eating microbes for bioremediation: Prospectsand regulatory challenges Autor: O. C. Ezezika, P. A. Singer Fuente: Technology in Society, Volume 32, Issue 4, Pages 331-335 Resumen: The use of genetic engineering to enhance the natural capacity of microorganisms for remediation has become very promising with new scientific discoveries occurring every year. Unfortunately, the application and commercialization of this technology has not kept pace with these research discoveries. This article uses two examples of genetically engineered microorganisms that were designed but never deployed in the clean-up of wastes to show how the application of genetically engineered microbes for bioremediation has not progressed in line with other biotechnological innovations. We argue that a more risk-based regulatory environment that fosters commercialization is important. In addition, we show how scientists could foster the commercialization of genetically engineered microbes for bioremediation through the use of technical safeguards and the consideration of regulatory challenges at the onset of their research. The lessons provided by these challenges could be applicable to current biotechnological innovations that face similar regulatory challenges. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V80-51H5HDD- 1&_user=10&_coverDate=11%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=3c38a518c6e17cf9ac055b439212b564&searchtype=aIsolation of pesticide-degrading actinomycetes from a contaminated site:Bacterial growth, removal and dechlorination of organochlorine pesticides Autor: M.S. Fuentes, C.S. Benimeli, S.A. Cuozzo, M.J. Amoroso Fuente. International Biodeterioration & Biodegradation, Volume 64, Issue 6, Pages 434-441 Resumen: Organochlorine pesticides are notorious, due to their high toxicity, persistence in the environment and their tendency to bioaccumulate. Their extensive use in the northwest of Argentina has left residues in the environment. Microbial degradation is an important process for pesticide bioremediation and actinomycetes have a great potential for that. The current study examined organochlorine pesticides in contaminated soil. Indigenous actinomycetes were isolated from contaminated samples to evaluate bacterial growth as well as pesticide removal and release of chloride ions as a result of degradation. Most of the isolated microorganisms belonged to the Streptomyces genus, except one, which belonged to Micromonospora. Bacterial growth depended on the microorganism and the pesticide present (chlordane, lindane or methoxychlor). Highest growth and pesticide removal were observed with chlordane. Twelve out of 18 studied strains released chloride into culture supernatants, and percentages were higher with chlordane as carbon source than with lindane or methoxychlor. These results are supported by principal component analysis. 18
  19. 19. This is the first report about actinomycetes isolated from an illegal storage of organochlorine pesticide in Argentina with capacity to growth, remove and use different organochlorine pesticide. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VG6-50819MG- 1&_user=10&_coverDate=09%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1587335555&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=14654fe09c06cb45f679cadbde7245a0&s earchtype=açMercury-resistant bacterial strains Pseudomonas and Psychrobacter spp.isolated from sediments of Orbetello Lagoon (Italy) and their possible usein bioremediation processes Autor: M. Pepi , C. Gaggi, E. Bernardini, S. Focardi, A. Lobianco, M. Ruta, V. Nicolardi, M. Volterrani, S. Gasperini, G. Trinchera, P. Renzi, M. Gabellini, S. E. Focardi Fuente: International Biodeterioration & Biodegradation, Article in Press Resumen: This study was aimed to isolate Hg-resistant bacteria from contaminated sediments of the Orbetello Lagoon in Italy and to assess their possible use as biofilms in bioremediation processes. Enrichment cultures prepared from contaminated sediments in the presence of 0.05 mM of mercury and under aerobic conditions allowed the isolation of five heterotrophic bacterial strains. 16S rDNA gene sequencing assigned the isolated strains to the genera Pseudomonas and Psychrobacter. For the first time mercury-resistant bacterial strains belonging to the genus Psychrobacter were evidenced. Minimum inhibitory concentrations in the presence of HgCl2 and of CH3HgCl showed high levels of resistance. EC50 values for the isolated bacterial strains in the presence of HgCl2 and of CH3HgCl confirmed the adaptation to the metal. Hg-resistant strains ORHg1, ORHg4 and ORHg5 showed the capacity to volatilize inorganic and organic mercury to elemental mercury, and formed biofilms on pumice particles, and were shown to play a role in the removal of mercury from sediment leachates. This study reports isolation and characterization of new Hg-resistant bacterial strains and provides novel insight into their possible use in bioremediation processes of mercury polluted sediments. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VG6-51B8G56- 2&_user=10&_coverDate=10%2F27%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=d0b5dfe665186b825d77b1e95979c23a&searchtype=a 19
  20. 20. Microbial communities involved in the bioremediation of an agedrecalcitrant hydrocarbon polluted soil by using organic amendments Autor: M. Ros, I. Rodríguez, C. García, T. Hernández Fuente: Bioresource Technology, Volume 101, Issue 18, Pages 6916-6923 Resumen: An 8-month field bioremediation experiment using fresh (FS) and composted (CS) sewage sludge and unamended soil (US) was carried out on an aged hydrocarbon contaminated semi-arid soil. FS treatments led to the highest percentage of hydrocarbon degradation (46%) and the highest bacterial and fungal population. Denaturing gradient gel electrophoresis analysis demonstrated differences in bacterial and fungal community structure of treated compared to uncontaminated soil (control). Time of sampling accounted for most of the differences than type of treatment. The principal phyla observed in bioremediation treatments were Actinobacteria and Ascomycota. Results pointed to the addition of organic amendments, particularly sewage sludge, as an useful strategy for improving the effectiveness of landfarming biodegradation processes in hydrocarbon polluted soils. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4YX0BKB- 3&_user=10&_coverDate=09%2F30%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10& md5=68e98f4defbfc757b6dbf23bcf3dfc02&searchtype=aMicrobial degradation of tetrachloromethane: mechanisms andperspectives for bioremediation Autor: C. Penny, S. Vuilleumier, F. Bringel Fuente: FEMS Microbiology Ecology, Volume 74, Issue 2, Pages 257-275 Resumen: Toxic man-made compounds released into the environment represent potential nutrients for bacteria, and microorganisms growing with such compounds as carbon and energy sources can be used to clean up polluted sites. However, in some instances, microorganisms contribute to contaminant degradation without any apparent benefit for themselves. Such cometabolism plays an important part in bioremediation, but is often difficult to control. Microbial degradation of tetrachloromethane (carbon tetrachloride, CCl4), a toxic ozone-depleting organic solvent mainly of anthropogenic origin, is only known to occur by cometabolic reduction under anoxic conditions. Yet no microbial system capable of using CCl4 as the sole carbon source has been described. Microbial growth based on CCl4 as a terminal electron acceptor has not been reported, although corresponding degradation pathways would yield sufficient energy. Known modes for the biodegradation of CCl4 involve several microbial metabolites, mainly metal-bound coenzymes and siderophores, which are produced by facultative or strictly anaerobic bacteria and methanogenic Archaea. Recent reports have demonstrated that CCl4 dechlorination rates are enhanced by redox-active organic compounds such as humic acids and quinones, which act as shuttles between electron-providing microorganisms and CCl4 as a strong electron acceptor. The key factors underlying dechlorination of CCl4, the practical aspects and specific requirements for microorganism-associated 20
  21. 21. degradation of CCl4 at contaminated sites and perspectives for future developments are discussed. http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6941.2010.00935.x/abstractMineralization of PCBs by the genetically modified strain Cupriavidusnecator JMS34 and its application for bioremediation of PCBs in soil Autor: J. M. Saavedra, F. Acevedo, M. González, M. Seeger Fuente: Applied Microbiology and Biotechnology, Volume 87, Issue 4, Pages 1543-1554 Resumen: Polychlorobiphenyls (PCBs) are classified as "high-priority pollutants." Diverse microorganisms are able to degrade PCBs. However, bacterial degradation of PCBs is generally incomplete, leading to the accumulation of chlorobenzoates (CBAs) as dead- end metabolites. To obtain a microorganism able to mineralize PCB congeners, the bph locus of Burkholderia xenovorans LB400, which encodes one of the most effective PCB degradation pathways, was incorporated into the genome of the CBA-degrading bacterium Cupriavidus necator JMP134-X3. The bph genes were transferred into strain JMP134-X3, using the mini-Tn5 transposon system and biparental mating. The genetically modified derivative, C. necator strain JMS34, had only one chromosomal insertion of bph locus, which was stable under nonselective conditions. This modified bacterium was able to grow on biphenyl, 3-CBA and 4-CBA, and degraded 3,5-CBA in the presence of m-toluate. The strain JMS34 mineralized 3-CB, 4-CB, 2,4-CB, and 3,5- CB, without accumulation of CBAs. Bioaugmentation of PCB-polluted soils with C. necator strain JMS34 and with the native B. xenovorans LB400 was monitored. It is noteworthy that strain JMS34 degraded, in 1 week, 99% of 3-CB and 4-CB and approximately 80% of 2,4-CB in nonsterile soil, as well as in sterile soil. Additionally, the bacterial count of strain JMS34 increased by almost two orders of magnitude in PCB- polluted nonsterile soil. In contrast, the presence of native microflora reduced the degradation of these PCBs by strain LB400 from 73% (sterile soil) to approximately 50% (nonsterile soil). This study contributes to the development of improved biocatalysts for remediation of PCB-contaminated environments. http://www.ncbi.nlm.nih.gov/pubmed/20414654Rapid Biodegradation of Benzo[a]pyrene by Bacillus subtilis BUM UnderThermophilic Condition Autor: Z. Zhao, J. W.-C. Wong Fuente: Environmental Engineering Science. Voluem 27, Issue 11, Pages 939-945 Resumen: Two thermophilic bacterial strains, Bacillus subtilis BUM (BUM) and Mycobacterium vanbaalenii BU42 (BU42), were tested for their potential in biodegradation of benzo[a]pyrene. Neither BUM nor BU42 utilized benzo[a]pyrene as the sole substrate under thermophilic condition. In the presence of 50, 250, and 500mg L−1 phenanthrene, the biodegradation of benzo[a]pyrene by BUM occurred and removals in 30 days were 14.8%, 38.8%, and 63.6%, respectively. This is the first report on the biodegradation of 21
  22. 22. benzo[a]pyrene by isolated thermophilic microorganism. The BUM strain was further tested for its ability in a soil composting system. Within a composting period of 42 days, removal of benzo[a]pyrene in the absence of BUM was 30.3%. Treatment with the inoculation of BUM significantly increased the removal of benzo[a]pyrene to 52.2%. Maximum zero-order degradation rates of benzo[a]pyrene by BUM in aqueous biodegradation experiment and soil composting system were 12.3mg L−1 day−1 and 9.7mg kg−1 day−1, respectively, which were significantly greater than most of the reported degradation rates by mesophiles. Experimental results affirmed that the strain BUM can effectively degrade benzo[a]pyrene under thermophilic condition. http://www.liebertonline.com/doi/abs/10.1089/ees.2010.0101?journalCode=eesScreening of PAH-degrading bacteria in a mangrove swamp using PCR-RFLP Autor: H. Liu, C. Yang, Y. Tian, G. Lin, T. Zheng Fuente: Marine Pollution Bulletin, Volume 60, Issue 11, Pages 2056-2061 Resumen: There are abundant PAH-degrading bacteria in mangrove sediments, and it is very important to screen the high efficiency degraders in order to perform bioremediation of PAH polluted environments. In order to obtain the more highly efficient PAH-degrading bacteria from a mangrove swamp, we first obtained 62 strains of PAH-degrading bacteria using traditional culture methods and based on their morphological characteristics. We then used the modern molecular biological technology of PCR- RFLP, in which the 16S rDNA of these strains were digested by different enzymes. Based on differences in the PCR-RFLP profiles, we obtained five strains of phenanthrene-degrading bacteria, five strains of pyrene-degrading bacteria, four strains of fluoranthene-degrading bacteria, five strains of benzo[a]pyrene-degrading bacteria and two strains of mixed PAH-degrading bacteria (including phenanthrene, pyrene, fluoranthene and benzo[a]pyrene). Finally, a total of 14 different PAH-degrading bacteria were obtained. The 16S rDNA sequences of these strains were aligned with the BLAST program on the NCBI website and it was found that they belonged to the α- proteobacteria and γ-proteobacteria, including four strains, where the similarities were no more than 97% and which were suspected therefore to be new species. This study indicated that PCR-RFLP was a very important method to screen degrading-bacteria, and also a significant molecular biological tool for the rapid classification and accurate identification of many different strains. On the other hand, it also showed that rich bacterial resources existed in mangrove areas, and that exploring and developing the functional microorganism from these mangrove areas would have wide use in the study of bioremediation of contaminated environments in the future. http://www.ncbi.nlm.nih.gov/pubmed/20719344 22
  23. 23. Synthesis and Utilization of E. coli-Encapsulated PEG-Based MicrodropletUsing a Microfluidic Chip for Biological Application Autor: K.G. Lee,T. Jung Park, S. Y. Soo, K. W. Wang, B. I.I. Kim, J. H. Park, C.-S. Lee, D. H. Kim, S. J. Lee Fuente: Biotechnology and Bioengineering, Volume 107, Pages 747–751 Resumen: We report herein an effective strategy for encapsulating Escherichia coli in polyethylene glycol diacrylate (PEGDA) microdroplets using a microfluidic device and chemical polymerization. PEGDA was employed as a reactant due to the biocompatibility, high porosity, and hydrophilic property. The uniform size and shape of microdroplets are obtained in a single-step process using microfluidic device. The size of microdroplets can be controlled through the changing continuous flow rate. The combination of microdroplet generation and chemical polymerization techniques provide unique environment to produce non-toxic ways of fabricating microorganism-encapsulated hydrogel microbeads. Due to these unique properties of micro-sized hydrogel microbeads, the encapsulated E. coli can maintain viability inside of microbeads and green fluorescent protein (GFP) and red fluorescent protein (RFP) genes are efficiently expressed inside of microbeads after isopropyl-β-D-thiogalactopyranoside induction, suggesting that there is no low-molecular weight substrate transfer limitation inside of microbeads. Furthermore, non-toxic, gentle, and outstanding biocompatibility of microbeads, the encapsulated E. coli can be used in various applications including biotransformation, biosensing, bioremediation, and engineering of artificial cells. http://onlinelibrary.wiley.com/doi/10.1002/bit.22861/abstractThe role of salicylate and biosurfactant in inducing phenanthrenedegradation in batch soil slurries Autor: Gottfried, A., N. Singhal, R. Elliot, S. Swift Fuente: Applied Microbiology and Biotechnology, Volume 86, Issue 5, Pages 1563-1571 Resumen: The majority of polycyclic aromatic hydrocarbons (PAHs) sorb strongly to soil organic matter posing a complex barrier to biodegradation. Biosurfactants can increase soil- sorbed PAHs desorption, solubilisation, and dissolution into the aqueous phase, which increases the bioavailability of PAHs for microbial metabolism. In this study, biosurfactants, carbon sources, and metabolic pathway inducers were tested as stimulators of microorganism degradation. Phenanthrene served as a model PAH and Pseudomonas putida ATCC 17484 was used as the phenanthrene degrading microorganism for the liquid solutions and soil used in this investigation. Bench-scale trials demonstrated that the addition of rhamnolipid biosurfactant increases the apparent aqueous solubility of phenanthrene, and overall degradation by at least 20% when combined with salicylate or glucose in liquid solution, when compared to solutions that contained salicylate or glucose with no biosurfactant. However, salicylate addition, with 23
  24. 24. no biosurfactant addition, increased the total degradation of phenanthrene 30% more than liquid systems with only biosurfactant addition. In soil slurries, small amounts of biosurfactant (0.25 g/L) showed a significant increase in total removal when only biosurfactant was added. In soil slurries containing salicylate, the effects of biosurfactant additions were negligible as there was greater than 90% removal, regardless of the biosurfactant concentration. The results of experiments performed in this study provide further evidence that an in situ enhancement strategy for phenanthrene degradation could focus on providing additional carbon substrates to induce metabolic pathway catabolic enzyme production, if degradation pathway intermediates are known.http://www.ncbi.nlm.nih.gov/pubmed/20146061 24
  25. 25. 2009Biodegradation of Stored jet Fuel by a Nocardia sp. Isolated fromContaminated Soil Autor: E. de Barros Gomes, A. Ururahy Soriano, R. de Cássia Mendonça de Miranda, M. de F. Vieira de Queiroz Sousa, N. Pereira Jr. Fuente: Brazilian Archives of Biology and Technology, Volume 52, Issue 5, Pages 1279-1284 Resumen: The aim of this study was to investigate the potential of degradation of an autochthonous bacterial strain, isolated from petroleum derivatives contaminated soil samples against jet fuel hydrocarbons. The autochthonous bacterial strain was characterized as Nocardia sp. Evaluation of their degrading abilities was carried out by presumptive assays as redox indicator test and by observations of surface tension decreases in aqueous medium. Degradation of jet fuel hydrocarbons was evaluated by chromatographic methods. Experiments were performed in flasks at two biostimulation rates. A bacterial strain of Pseudomonas aeruginosa UFPEDA 39 was utilized as a reference microorganism. The bacterial strain, identified as Nocardia sp, demonstrate high ability to degrade jet fuel compounds as well as to produce surface active compounds when compared to the reference microrganism. http://www.scielo.br/pdf/babt/v52n5/v52n5a27.pdfBiological treatment of saline wastewater using a salt-tolerantmicroorganism Autor: S.I. Abou-Elela , M. M. Kamel, M. E. Fawzy Fuente: Desalination, Volume 250, Issue 1, Pages 1-5 Resumen: Biological aerobic treatment of saline wastewater provides the material of this study. A salt-tolerant microorganism (Staphylococcus xylosus) was isolated from a vegetable pickled plant containing about 7.2% salt. Selection, identification and characterization of the microorganism were carried out. The isolated microorganism was used as inoculum for biodegradation. An activated sludge reactor operated in a fed-batch mode was used for the treatment of synthetic saline wastewater using three different microbial cultures namely: activated sludge (100%), a mixture of Staphylococcus supplement by activated sludge (1:1) and pure S. xylosus (100%) at different salt concentrations ranging from 0.5 to 3% NaCl. The results obtained showed that at low NaCl concentration (1%), the removal efficiency of chemical oxygen demand (COD) using different microbial cultures were almost the same (80–90%). However, increasing the NaCl concentration to 2% and using Staphylococcus-supplemented mixture by activated sludge and S. xylosus alone improved the treatment performance as indicated by COD removal rates which reached 91% and 93.4%, respectively, while the system performance started to deteriorate when activated bacterial culture was used alone (74%). Furthermore, the increase in NaCl concentration up to 3% and with the inclusion of Staphylococcus-supplemented mixture by activated sludge increased the COD removal to 93%, while the use of S. xylosus alone further improved the COD removal rate up to 94%. Also, the use of S. xylosus 25
  26. 26. alone proved to be capable for biological treatment of a real case study of a vegetable pickled wastewater containing 7.2% salinity; the removal efficiency of COD reached 88% at this very high concentration of NaCl. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFX-4XG3D6G- 9&_user=10&_coverDate=01%2F01%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1587366099&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=598bbaf10f741cb6c5a6b3f8ee56b57b&se archtype=aBioremediation of Fenvalerate by Pseudomonas aeruginosa in a Scale upBioreactor Autor: M. H. Fulekar Fuente: Romanian Biotechnological Letters, Volume 14, Issue 6, Pages 4900-4905 Resumen: The potential of microorganisms has been assessed for bioremediation of fenvalerate using the scale up process followed by bioremediation in bioreactor under controlled environmental conditions. Pseudomonas aeruginosa isolate NCIM 2074 was adapted to varying concentration of fenvalerate Viz. 10,25,50,75,100 mg/l in an incubator shaker at 37º C and 150 rpm. An initial 10 mg/l concentration of fenvalerate was added in a minimal salt medium (MSM) and subjected to incubation for 14 days with Pseudomonas aeruginosa and thereafter the culture was scaled up to higher concentration of fenvalerate by transferring one milliliter of MSM to 25,50,75,100 over a period of 70 days at a frequency of 14 days. The fenvalerate concentration after every 14 days was assessed by GC-MS for the adaptability of microorganism for biodegradation. The research findings show that 10 mg/l fenvalerate was completely degraded within a period of 14 days in MSM; whereas in the concentration ranging from 25 to 100 mg/l fenvalerate in MSM, the bioremediation rate was found decreasing with increasing concentration. Fenvalerate at 50 and 100 ppm concentration was found inhibiting to the microorganism. The adapted microorganism, after scale up process was bioremediated in a flask shaker method at 10, 25 50 mg/l in MSM separately under controlled environmental conditions. The parent compound was found biodegraded into the primary metabolite 4-chloro-α (1-methylethyl) benzene acetic acid and α -cyano-3-phenoxybenzyl alcohol and 3-Phenoxy benzoic acid. These intermediates in long run on acclimatization with Pseudomonas aeruginosa might converts into environment friendly compounds. The research findings show that Pseudomonas aeruginosa has the potential to degrade the toxic compound such as fenvalerate ranging from 10 to 25 ppm. This technology would be beneficial to pesticides industry for bioremediation of pesticide fenvalerate. http://www.rombio.eu/rbl6vol14/Lucr%2018%20Fulekar.pdf 26
  27. 27. Bioremediation of soil heavily contaminated with crude oil and itsproducts: Composition of the microbial consortium Autor: J. S. Milic, V. P. Beskoski, M. V. Ilic, S. A. M. Ali, G. D. Gojic-Cvijovic, M. Vrivic Fuente: Journal of the Serbian Chemical Society, Volume 74, Issue 4, Pages 455-460 Resumen: Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH) had been reduced from 29.80 to 3.29 g/kg (89 %). In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g). On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations. http://www.doiserbia.nb.rs/img/doi/0352-5139/2009/0352-51390904455M.pdfEnrichment and isolation of endosulfan-degrading microorganism fromtropical acid soil Autor: S. S. Kalyani, J. Sharma, S. Singh, P. Dureja, P. Lata Fuente: Journal of Environmental Science and Health, Part B, Pesticides, food contaminants, and agricultural wastes, Volume 44, Issue 7, Pages 663-672 Resumen: Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4- benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of alpha and beta endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 microg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan-degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites. http://www.ncbi.nlm.nih.gov/pubmed/20183076 27
  28. 28. Isolation and characterization of an SDS-degrading Klebsiella oxytoca Autor: M.Y. Shukor, W.S.W. Husin, M.F.A. Rahman, N.A. Shamaan, M.A. Syed Fuente: Journal of Environmental Biology, Volume 30, Issue 1, Pages 129-134 Resumen: Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37oC. Ammonium sulphate; at 2.0 g l-1, was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l-1 and was completely inhibited at 10 g l-1 SDS. At the tolerable initial concentration of 2.0 g l- 1, almost 80% of 2.0 g l-1 SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The Km (app) and Vmax (app) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 >mol min-1 mg-1 protein, respectively. http://www.jeb.co.in/journal_issues/200901_jan09_spl/paper_20.pdfMitigation of Ca, Fe, and Mg loads in surface waters around mining areasusing indigenous microorganism strains Autor: E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi , B.B. Mamba, T.G. Barnard Fuente: Physics and Chemisty of the Earth, Parts A/B/C, Voluem 34, Issues13-16, Pages 825- 829 Resumen: In attempting to achieve acceptable minimum concentration levels of excess calcium, iron and magnesium in surface waters around mining areas, experiments conducted at laboratory scale to remove these metals from synthetic solutions (30 ppm and 50 ppm) using indigenous strains of Shewanella sp., Bacillus subtilis sp. and Brevundimonas sp. revealed varying abilities of these microorganisms. B. subtilis and Shewanella sp. absorbed the highest amount (14% Ca, 8% Mg and 8% Fe) of each of the three metals, recorded from solutions containing the metals at 30 ppm concentration, with calcium being most easily removed metal species. The purpose of this study was to investigate a cost-effective solution based on indigenous microorganisms for the bioremediation of toxic metallic species in the mine dumps where small scale mining operations occur. Metal removal from solution decreased when their concentration in solution was at 50 ppm. It was also found that combining the metals in one solution affected the microorganisms’ affinity for the metals thus reducing their removal efficiency. There was also a tendency for microorganisms to release the absorbed metal into solution after a 28
  29. 29. certain period of time, most probably due to an efflux transport mechanism. It was further concluded that the metal removal efficiency is dependent on the biomass, and the percentage removals obtained in this study suggest that we could achieve better removal rates of targeted metals and reduce their concentrations to below recommended values through the optimization of the biomass. The success of this study has prompted a broader research project into the removal of metal species in mine dumps before contamination of water resources occurs so that the water in the disused mine pits is suitable for irrigation, farming and washing. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6X1W-4WRD3KF- 3&_user=10&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1586496279&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=68fd7b658910206fe55287ab1cbcc473&s earchtype=aMultifunctional properties of phosphate-solubilizing microorganismsgrown on agro-industrial wastes in fermentation and soil conditions Autor: M. Vassileva, M. Serrano, V. Bravo, E. Jurado, I. Nikoleva, V. Martos, N. Vassilev Fuente: Applies Microbiology and Biotechnology, Volume 85, issue 5, Pages 1287-1299 Resumen: One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties. http://www.springerlink.com/content/25271645484r5748/Specific dechlorinase activity in lindane degradation by Streptomyces spM7 Autor: S. A. Cuozzo, G. G. Rollán, C. M. Abate, M. J. Amoroso 29
  30. 30. Fuente: World Journal of Microbiology and Biotechnology, Volume 25, Issue 9, Pages 1539-1546 Resumen: Synthesis of dechlorinase in Streptomyces sp. M7 was induced when the microorganism was grown in the presence of lindane (γ-hexachlorocyclohexane) as the only carbon source. Activity of cells grown with lindane was about four and half times higher compared to cells grown with glucose. Maximum dechlorinase activity was observed at 30°C in alkaline conditions pH (7.9) and the enzyme did not show cation dependency. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed one differential band with a molecular weight similar to serum albumin (M r 66,200), which corresponded to polynucleotide phosphorylase, an enzyme that plays an important role in the regulation system and could be involved in the regulation of the dechlorinase gene. Detected in cell-free extracts were γ-pentachlorocyclohexene and 1,3,4,6-tetrachloro- 1,4-cyclohexadiene, both being products of the dechlorinase activity. This is the first time that the presence of an enzyme with dechlorinase activity has been demonstrated in an actinomycete strain isolated in Tucumán, Argentina. Characteristics of this enzyme revealed that Streptomyces sp. M7 could be useful in the future in bioremediation of soil or as a biosensor. http://www.springerlink.com/content/l8q231lh42378714/Synergic degradation of phenanthrene by consortia of newly isolatedbacterial strains Autor: Y. M. Kim, C. K. Ahn, S. H. Woo, G. Y.l Jung, J. M. Park Fuente: Journal of Biotechnology, Volume 144, Issue 4, Pages 293-298 Resumen: Three different bacteria capable of degrading phenanthrene were isolated from sludge of a pulp wastewater treatment plant and identified as Acinetobacter baumannii, Klebsiella oxytoca, and Stenotrophomonas maltophilia. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their population dynamics during phenanthrene degradation were monitored using capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). When a single microorganism was used, phenanthrene degradation efficiency was very low (48.0, 11.0, and 9.0% for A. baumannii, K. oxytoca, and S. maltophilia respectively, after 360 h cultivation). All consortia that included S. maltophilia degraded 80.0% of phenanthrene and reduced lag time to 48 h compared to the 168 h of pure A. baumannii culture. CE-SSCP analysis showed that S. maltophilia was the predominant species during phenanthrene degradation in the mixed culture. The results indicate that mixed cultures of microorganisms may effectively degrade target chemicals, even if the microorganisms show low degradation activity in pure culture. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3C-4XDD013- 1&_user=10&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1585666610&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=429f34626e16fa0e9461e75f67837302&s earchtype=a 30
  31. 31. 2008Adaptive and cross resistance to cadmium(II) and zinc(II) byPseudomonas aeruginosa BC15 Autor: C. E. Raja, S. Sasikumar, G. S. Selvam Fuente: Biologia, Volume 63, Issue 4, Pages 461-465 Resumen: Cadmium and zinc appear in the combined forms and they are co-pollutants. Cd is the most hazardous metal ion for human beings and causes renal dysfunction, liver and lungs damage, bone degeneration and blood damage. Though Zn is an essential nutrient, excess of Zn is toxic. Biological process was more important because conventional methods fail to remediate these pollutants due to high costs and less affordability. The screening and understanding of the functioning of microorganism plays an important role in removal and recovery of metals from heavy-metal-polluted water and soil. In our study, the strain Pseudomonas aeruginosa BC15 was isolated from oil- mill-treated waste water and it showed to be highly resistant to 6 mM Cd and 20 mM Zn in the solid and liquid media. The growth studies of BC15 strain in the medium without induction exhibited high tolerable capacity when compared to other microbes. Pretreatment of P. aeruginosa BC15 with sub-lethal concentrations of Cd induced adaptive resistance to lethal doses of Cd. Cadmium-induced cells also showed cross resistance to lethal concentration of zinc. The organism had high resistance against Cd and Zn. This has been clearly proven through biosorption studies: Cd was absorbed up to 62% and Zn about 60% in single solution, whereas in binary solution Cd was biosorbed up to 82% and Zn 85%. In conclusion, this study reveals the significance of using the strain P. aeruginosa BC15 in the bioremediation of Cd and Zn from industrial waste water and contaminated soil. http://www.springerlink.com/content/j3k83662k323uq34/Bioremediation of trichloroethylene contaminated groundwater usinganaerobic process Autor: C. Chomsurin, J. Kajorntraidej, K. Kuangmuang Fuente: Water Science and Technology, Volume 58, Issue 11, Pages 2127-2132 Resumen: Anaerobic remediation of trichloroethylene (TCE) contaminated soil and groundwater was studied in laboratory setups. In this process fermentation of polymeric organic materials (POMS) produced volatile fatty acids (VFAs) that were electron donors in reductive dechlorination of TCE. Shredded peanut shell was selected as low cost POM and the experiments were set up in 500 ml Erlenmeyer flasks. In the setups, approximately 25 mg of leachate contaminated soil was used as the main source of microorganisms and about 5 g of shredded peanut shell (0.5-2.36 mm) was added to produce VFAs for dechlorination of TCE. In the first set of experiments, fermentation of soil and shredded peanut shell was studied and it was found that VFAs were produced continuously with increasing concentration (5.63 mM as CH3COOH from the first day to 17.17 in the 10th day of the experiment). During the fermentation, concentration of 31
  32. 32. ammonia-nitrogen was 22-50 mg/L, the ratio of VFA to NH3 was 15.29-23.44 and pH was 5.24-6.00. These results show that the system was appropriate for microorganism activities. In the second set of experiments, TCE (approximately 48 mg/L) was added to the fermentation system and remediation of TCE by reductive dechlorination was studied. It was found that 0.04(+/-0.01) mg TCE adsorbed to a gram of soil and peanut shells at the beginning of the experiment and based on mass balance of the system, TCE concentration in water was linearly reduced at the rate of 0.0098 mg/hr. http://www.ncbi.nlm.nih.gov/pubmed/19092188Degradation of mixtures of phenolic compounds by Arthrobacterchlorophenolicus A6 Autor: M. Unell, K. Nordin, C. Jernberg, J. Stenström, J. K. Jansson Fuente: Biodegradation, Volume 19, Issue 4, Pages 495-505 Resumen: In this study the chlorophenol-degrading actinobacterium, Arthrobacter chlorophenolicus A6, was tested for its ability to grow on mixtures of phenolic compounds. During the experiments depletion of the compounds was monitored, as were cell growth and activity. Activity assays were based on bioluminescence output from a luciferase-tagged strain. When the cells were grown on a mixture of 4-chlorophenol, 4-nitrophenol and phenol, 4-chlorophenol degradation apparently was delayed until 4-nitrophenol was almost completely depleted. Phenol was degraded more slowly than the other compounds and not until 4-nitrophenol and 4-chlorophenol were depleted, despite this being the least toxic compound of the three. A similar order of degradation was observed in non-sterile soil slurries inoculated with A. chlorophenolicus. The kinetics of degradation of the substituted phenols suggest that the preferential order of their depletion could be due to their respective pKa values and that the dissociated phenolate ions are the substrates. A mutant strain (T99), with a disrupted hydroxyquinol dioxygenase gene in the previously described 4-chlorophenol degradation gene cluster, was also studied for its ability to grow on the different phenols. The mutant strain was able to grow on phenol, but not on either of the substituted phenols, suggesting a different catabolic pathway for the degradation of phenol by this microorganism. http://www.springerlink.com/content/t668777902668v86/Development of a Bacterial Preparation Based on Immobilized Cells Autor: K. A. Ausheva, D. A. Goncharuk, E. S. babusenko, S. A. Nekhaev, Z. S. Sultygova, n. S. Markvichev Fuente: Theoretical Foundations of Chemical Engineering, Volume 42, Issue 5, Pages 767-773 Resumen: A new method for removing thin oil films from a water surface with the use of the oil- degrading microorganism Acinetobacter valentis immobilized in calcium alginate gel has been developed. It has been demonstrated that n-alkanes emulsified into calcium alginate granules impart positive buoyancy to the granules. The parameters of obtaining calcium alginate granules with immobilized oil-degrading cells affect the characteristics 32
  33. 33. of biological preparation. It has been demonstrated that the use of the biological preparation containing emulsified n-alkanes makes it possible to increase the bioremediation rate due to localization of immobilized and free cells in the upper water level. The new form of biological preparations makes it possible to decrease the amount of oil hydrocarbons by as much as 97% for 21 days at a temperature of 10–22°C versus 63% in the control variant. http://www.springerlink.com/content/y31721331m6u8xj7/Enhancement of bioremediation by Ralstonia sp HM-1 in sedimentpolluted by Cd and Zn Autor: Y.-J. Park, J.-J. Ko ,S.-L. Yun, E. Y. Lee, S.-J. Kim, S.-W. Kang, B.-C. Lee, S.-K. Kim Fuente: Bioresource Technology, Volume 99, Issue 16, Pages 7458-7463 Resumen: In this study, the potential for the application of the bioaugmentation to Cd and Zn contaminated sediment was investigated. A batch experiment was performed in the lake sediments augmented with Ralstonia sp. HM-1. The degradation capacity of 18.7 mg- DOC/l/day in the treatment group was bigger than that of the blank group (4.4 mg- DOC/l/day). It can be regarded as the result of the reduction of the metal concentration in the liquid phase due to adsorption into the sediments, with the increased alkalinity resulting from the reduction of sulfate by sulfate reducing bacteria (SRB). The removal efficiency of cadmium and zinc in the treatment group was both 99.7% after 35 days. Restrain of elution to water phase from sediment in the Ralstonia sp. HM-1 added treatment group was also shown. In particular, the observed reduction of the exchangeable fraction and an increase in the bound to organics or sulfide fraction in the treatment group indicate its role in the prevention of metal elution from the sediment. Therefore, for bioremediation and restrain of elution from the sediment polluted by metal, Ralstonia sp. augmentation with indigenous microorganism including SRB, sediment stabilization and restrain of elution to surface water is recommended. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V24-4S92XKV- 1&_user=10&_coverDate=11%2F30%2F2008&_rdoc=1&_fmt=high&_orig=search&_origin=searc h&_sort=d&_docanchor=&view=c&_searchStrId=1586522917&_rerunOrigin=google&_acct=C000 050221&_version=1&_urlVersion=0&_userid=10&md5=f11bcc6aa5329751cbe816da2225754b&s earchtype=aEnhancement of PCB degradation by Burkholderia xenovorans LB400 inbiphasic systems by manipulating culture conditions Autor: L. Rehmann, A. J. Daugulis Fuente: Biotechnology and Bioengineering, Volume 99, Issue 3, Pages 521-528 Resumen: Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of 33

×