Scaling Apache Storm - Strata + Hadoop World 2014

P
P. Taylor GoetzApache Storm Committer at Hortonworks
Scaling Apache Storm 
P. Taylor Goetz, Hortonworks 
@ptgoetz
About Me 
Member of Technical Staff / Storm Tech Lead 
@ Hortonworks 
Apache Storm PMC Chair 
@ Apache
About Me 
Member of Technical Staff / Storm Tech Lead 
@ Hortonworks 
Apache Storm PMC Chair 
@ Apache 
Volunteer Firefighter since 2004
1M+ messages / sec. on a 10-15 
node cluster 
How do you get there?
How do you fight fire?
Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014
Put the wet stuff on the red stuff. 
Water, and lots of it.
Scaling Apache Storm - Strata + Hadoop World 2014
When you're dealing with big fire, you 
need big water.
Static Water Sources 
Lakes 
Streams 
Reservoirs, Pools, Ponds
Scaling Apache Storm - Strata + Hadoop World 2014
Data Hydrant 
Active source 
Under pressure
Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014
How does this relate to Storm?
Little’s Law 
L=λW 
The long-term average number of customers in a stable system L 
is equal to the long-term average effective arrival rate, λ, multiplied 
by the average time a customer spends in the system, W; or 
expressed algebraically: L = λW. 
http://en.wikipedia.org/wiki/Little's_law
Batch vs. Streaming
Batch Processing 
Operates on data at rest 
Velocity is a function of 
performance 
Poor performance costs you time
Stream Processing 
Data in motion 
At the mercy of your data source 
Velocity fluctuates over time 
Poor performance….
Poor performance bursts the pipes. 
Buffers fill up and eat memory 
Timeouts / Replays 
“Sink” systems overwhelmed
What can developers do?
Keep tuple processing code tight 
public class MyBolt extends BaseRichBolt { 
! 
public void prepare(Map stormConf, 
TopologyContext context, 
OutputCollector collector) { 
// initialize task 
} 
! 
public void execute(Tuple input) { 
// process input — QUICKLY! 
} 
! 
public void declareOutputFields(OutputFieldsDeclarer declarer) { 
// declare output 
} 
! 
} 
Worry about this!
Keep tuple processing code tight 
public class MyBolt extends BaseRichBolt { 
! 
public void prepare(Map stormConf, 
TopologyContext context, 
OutputCollector collector) { 
// initialize task 
} 
! 
public void execute(Tuple input) { 
// process input — QUICKLY! 
} 
! 
public void declareOutputFields(OutputFieldsDeclarer declarer) { 
// declare output 
} 
! 
} 
Not this.
Know your latencies 
L1 
cache 
reference 
0.5 
ns 
Branch 
mispredict 
5 
ns 
L2 
cache 
reference 
7 
ns 
14x 
L1 
cache 
Mutex 
lock/unlock 
25 
ns 
Main 
memory 
reference 
100 
ns 
20x 
L2 
cache, 
200x 
L1 
cache 
Compress 
1K 
bytes 
with 
Zippy 
3,000 
ns 
Send 
1K 
bytes 
over 
1 
Gbps 
network 
10,000 
ns 
0.01 
ms 
Read 
4K 
randomly 
from 
SSD* 
150,000 
ns 
0.15 
ms 
Read 
1 
MB 
sequentially 
from 
memory 
250,000 
ns 
0.25 
ms 
Round 
trip 
within 
same 
datacenter 
500,000 
ns 
0.5 
ms 
Read 
1 
MB 
sequentially 
from 
SSD* 
1,000,000 
ns 
1 
ms 
4X 
memory 
Disk 
seek 
10,000,000 
ns 
10 
ms 
20x 
datacenter 
roundtrip 
Read 
1 
MB 
sequentially 
from 
disk 
20,000,000 
ns 
20 
ms 
80x 
memory, 
20X 
SSD 
Send 
packet 
CA-­‐>Netherlands-­‐>CA 
150,000,000 
ns 
150 
ms 
https://gist.github.com/jboner/2841832
Use a Cache 
Guava is your friend.
Expose your knobs and gauges. 
DevOps will appreciate it.
Externalize Configuration 
Hard-coded values require 
recompilation/repackaging. 
conf.setNumWorkers(3); 
builder.setSpout("spout", new RandomSentenceSpout(), 5); 
builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout"); 
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word")); 
Values from external config. 
No repackaging! 
conf.setNumWorkers(props.get(“num.workers")); 
builder.setSpout("spout", new RandomSentenceSpout(), props.get(“spout.paralellism”)); 
builder.setBolt("split", new SplitSentence(), props.get(“split.paralellism”)).shuffleGrouping("spout"); 
builder.setBolt("count", new WordCount(), props.get(“count.paralellism”)).fieldsGrouping("split", new Fields("word"));
What can DevOps do?
How big is your hose?
Text 
Find out!
Performance testing is essential! 
Text
How to deal with small pipes? 
(i.e. When your output is more like a garden hose.)
Parallelize 
Slow sinks
Parallelism == Manifold 
Take input from one big pipe and 
distribute it to many smaller pipes 
The bigger the size difference, the 
more parallelism you will need
Sizeup 
Initial assessment
Every fire is different.
Text
Every streaming use case is different.
Sizeup — Fire 
What are my water 
sources? What GPM 
can they support? 
How many lines (hoses) 
do I need? 
How much water will I 
need to flow to put this 
fire out?
Sizeup — Storm 
What are my input 
sources? 
At what rate do they 
deliver messages? 
What size are the 
messages? 
What's my slowest data 
sink?
There is no magic bullet.
But there are good starting points.
Numbers 
Where to start.
1 Worker / Machine / Topology 
Keep unnecessary network transfer to a minimum
1 Acker / Worker 
Default in Storm 0.9.x
1 Executor / CPU Core 
Optimize Thread/CPU usage
1 Executor / CPU Core 
(for CPU-bound use cases)
1 Executor / CPU Core 
Multiply by 10x-100x for I/O bound use cases
Example 
10 Worker Nodes 
16 Cores / Machine 
10 * 16 = 160 “Parallelism Units” available
Example 
10 Worker Nodes 
16 Cores / Machine 
10 * 16 = 160 “Parallelism Units” available 
! 
Subtract # Ackers: 160 - 10 = 150 Units.
Example 
10 Worker Nodes 
16 Cores / Machine 
(10 * 16) - 10 = 150 “Parallelism Units” available
Example 
10 Worker Nodes 
16 Cores / Machine 
(10 * 16) - 10 = 150 “Parallelism Units” available (* 10-100 if I/O bound) 
Distrubte this among tasks in topology. Higher for slow tasks, lower for fast tasks.
Example 
150 “Parallelism Units” available 
Emit Calculate Persist 
10 40 100
Watch Storm’s “capacity” metric 
This tells you how hard components are working. 
Adjust parallelism unit distribution accordingly.
This is just a starting point. 
Test, test, test. Measure, measure, measure.
Internal 
Messaging 
Handling backpressure.
Internal Messaging (Intra-worker)
Key Settings 
topology.max.spout.pending 
Spout/Bolt API: Controls how many tuples are in-flight (not ack’ed) 
Trident API: Controls how many batches are in flight (not committed)
Key Settings 
topology.max.spout.pending 
When reached, Storm will temporarily stop emitting data from Spout(s) 
WARNING: Default is “unset” (i.e. no limit)
Key Settings 
topology.max.spout.pending 
Spout/Bolt API: Start High (~1,000) 
Trident API: Start Low (~1-5)
Key Settings 
topology.message.timeout.secs 
Controls how long a tuple tree (Spout/Bolt API) or batch (Trident API) has to 
complete processing before Storm considers it timed out and fails it. 
Default value is 30 seconds.
Key Settings 
topology.message.timeout.secs 
Q: “Why am I getting tuple/batch failures for no apparent reason?” 
A: Timeouts due to a bottleneck. 
Solution: Look at the “Complete Latency” metric. Increase timeout and/or 
increase component parallelism to address the bottleneck.
Turn knobs slowly, one at a time.
Don't mess with settings you don't 
understand.
Storm ships with sane defaults 
Override only as necessary
Hardware 
Considerations
Nimbus 
Generally light load 
Can collocate Storm UI service 
m1.xlarge (or equivalent) should suffice 
Save the big metal for Supervisor/Worker machines…
Supervisor/Worker Nodes 
Where hardware choices have the most impact.
CPU Cores 
More is usually better 
The more you have the more 
threads you can support (i.e. 
parallelism) 
Storm potentially uses a lot of 
threads
Memory 
Highly use-case specific 
How many workers (JVMs) per 
node? 
Are you caching and/or holding 
in-memory state? 
Tests/metrics are your friends
Network 
Use bonded NICs if necessary 
Keep nodes “close”
Other performance considerations
Don’t “Pancake!” 
Separate concerns.
Don’t “Pancake!” 
Separate concerns. 
CPU Contention 
I/O Contention 
Disk Seeks (ZooKeeper)
Keep this guy happy. 
He has big boots and a shovel.
ZooKeeper Considerations 
Use dedicated machines, preferably 
bare-metal if an option 
Start with 3 node ensemble 
(can tolerate 1 node loss) 
I/O is ZooKeeper’s main bottleneck 
Dedicated disk for ZK storage 
SSDs greatly improve performance
Recap 
Know/track your latencies and code appropriately 
Externalize configuration 
Scaling is a factor of balancing the I/O and CPU requirements of your use 
case 
Dev + DevOps + Ops coordination and collaboration is essential
Thanks! 
P. Taylor Goetz, Hortonworks 
@ptgoetz
1 of 80

More Related Content

What's hot(20)

MongoDB Performance DebuggingMongoDB Performance Debugging
MongoDB Performance Debugging
MongoDB3.8K views
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
Julian Hyde7.7K views
Hive + Tez: A Performance Deep DiveHive + Tez: A Performance Deep Dive
Hive + Tez: A Performance Deep Dive
DataWorks Summit57.6K views

Viewers also liked(7)

Resource Aware Scheduling in Apache StormResource Aware Scheduling in Apache Storm
Resource Aware Scheduling in Apache Storm
DataWorks Summit/Hadoop Summit93.1K views
Realtime Analytics with Storm and HadoopRealtime Analytics with Storm and Hadoop
Realtime Analytics with Storm and Hadoop
DataWorks Summit238.1K views
Yahoo compares Storm and SparkYahoo compares Storm and Spark
Yahoo compares Storm and Spark
Chicago Hadoop Users Group198.4K views
Kafka Tutorial Advanced Kafka ConsumersKafka Tutorial Advanced Kafka Consumers
Kafka Tutorial Advanced Kafka Consumers
Jean-Paul Azar16.5K views

Similar to Scaling Apache Storm - Strata + Hadoop World 2014(20)

How Many Slaves (Ukoug)How Many Slaves (Ukoug)
How Many Slaves (Ukoug)
Doug Burns802 views
The Future of Apache StormThe Future of Apache Storm
The Future of Apache Storm
DataWorks Summit/Hadoop Summit2.2K views
Scalable Apache for BeginnersScalable Apache for Beginners
Scalable Apache for Beginners
webhostingguy2.9K views
storm-170531123446.pptxstorm-170531123446.pptx
storm-170531123446.pptx
IbrahimBenhadhria1 view
Advanced off heap ipcAdvanced off heap ipc
Advanced off heap ipc
Peter Lawrey3.6K views
StormStorm
Storm
Pouyan Rezazadeh833 views
Mutiny + quarkusMutiny + quarkus
Mutiny + quarkus
Edgar Domingues342 views
The Need for Async @ ScalaWorldThe Need for Async @ ScalaWorld
The Need for Async @ ScalaWorld
Konrad Malawski4.5K views
Tuning Java Servers Tuning Java Servers
Tuning Java Servers
Srinath Perera1.6K views
Intro to CascadingIntro to Cascading
Intro to Cascading
Ben Speakmon764 views
A Scalable I/O Manager for GHCA Scalable I/O Manager for GHC
A Scalable I/O Manager for GHC
Johan Tibell2.2K views

More from P. Taylor Goetz(7)

Recently uploaded(20)

ChatGPT and AI for Web DevelopersChatGPT and AI for Web Developers
ChatGPT and AI for Web Developers
Maximiliano Firtman152 views
Liqid: Composable CXL PreviewLiqid: Composable CXL Preview
Liqid: Composable CXL Preview
CXL Forum118 views
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation23 views
The Research Portal of Catalonia: Growing more (information) & more (services)The Research Portal of Catalonia: Growing more (information) & more (services)
The Research Portal of Catalonia: Growing more (information) & more (services)
CSUC - Consorci de Serveis Universitaris de Catalunya51 views

Scaling Apache Storm - Strata + Hadoop World 2014

  • 1. Scaling Apache Storm P. Taylor Goetz, Hortonworks @ptgoetz
  • 2. About Me Member of Technical Staff / Storm Tech Lead @ Hortonworks Apache Storm PMC Chair @ Apache
  • 3. About Me Member of Technical Staff / Storm Tech Lead @ Hortonworks Apache Storm PMC Chair @ Apache Volunteer Firefighter since 2004
  • 4. 1M+ messages / sec. on a 10-15 node cluster How do you get there?
  • 5. How do you fight fire?
  • 8. Put the wet stuff on the red stuff. Water, and lots of it.
  • 10. When you're dealing with big fire, you need big water.
  • 11. Static Water Sources Lakes Streams Reservoirs, Pools, Ponds
  • 13. Data Hydrant Active source Under pressure
  • 17. How does this relate to Storm?
  • 18. Little’s Law L=λW The long-term average number of customers in a stable system L is equal to the long-term average effective arrival rate, λ, multiplied by the average time a customer spends in the system, W; or expressed algebraically: L = λW. http://en.wikipedia.org/wiki/Little's_law
  • 20. Batch Processing Operates on data at rest Velocity is a function of performance Poor performance costs you time
  • 21. Stream Processing Data in motion At the mercy of your data source Velocity fluctuates over time Poor performance….
  • 22. Poor performance bursts the pipes. Buffers fill up and eat memory Timeouts / Replays “Sink” systems overwhelmed
  • 24. Keep tuple processing code tight public class MyBolt extends BaseRichBolt { ! public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { // initialize task } ! public void execute(Tuple input) { // process input — QUICKLY! } ! public void declareOutputFields(OutputFieldsDeclarer declarer) { // declare output } ! } Worry about this!
  • 25. Keep tuple processing code tight public class MyBolt extends BaseRichBolt { ! public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { // initialize task } ! public void execute(Tuple input) { // process input — QUICKLY! } ! public void declareOutputFields(OutputFieldsDeclarer declarer) { // declare output } ! } Not this.
  • 26. Know your latencies L1 cache reference 0.5 ns Branch mispredict 5 ns L2 cache reference 7 ns 14x L1 cache Mutex lock/unlock 25 ns Main memory reference 100 ns 20x L2 cache, 200x L1 cache Compress 1K bytes with Zippy 3,000 ns Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms Read 4K randomly from SSD* 150,000 ns 0.15 ms Read 1 MB sequentially from memory 250,000 ns 0.25 ms Round trip within same datacenter 500,000 ns 0.5 ms Read 1 MB sequentially from SSD* 1,000,000 ns 1 ms 4X memory Disk seek 10,000,000 ns 10 ms 20x datacenter roundtrip Read 1 MB sequentially from disk 20,000,000 ns 20 ms 80x memory, 20X SSD Send packet CA-­‐>Netherlands-­‐>CA 150,000,000 ns 150 ms https://gist.github.com/jboner/2841832
  • 27. Use a Cache Guava is your friend.
  • 28. Expose your knobs and gauges. DevOps will appreciate it.
  • 29. Externalize Configuration Hard-coded values require recompilation/repackaging. conf.setNumWorkers(3); builder.setSpout("spout", new RandomSentenceSpout(), 5); builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout"); builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word")); Values from external config. No repackaging! conf.setNumWorkers(props.get(“num.workers")); builder.setSpout("spout", new RandomSentenceSpout(), props.get(“spout.paralellism”)); builder.setBolt("split", new SplitSentence(), props.get(“split.paralellism”)).shuffleGrouping("spout"); builder.setBolt("count", new WordCount(), props.get(“count.paralellism”)).fieldsGrouping("split", new Fields("word"));
  • 31. How big is your hose?
  • 33. Performance testing is essential! Text
  • 34. How to deal with small pipes? (i.e. When your output is more like a garden hose.)
  • 36. Parallelism == Manifold Take input from one big pipe and distribute it to many smaller pipes The bigger the size difference, the more parallelism you will need
  • 38. Every fire is different.
  • 39. Text
  • 40. Every streaming use case is different.
  • 41. Sizeup — Fire What are my water sources? What GPM can they support? How many lines (hoses) do I need? How much water will I need to flow to put this fire out?
  • 42. Sizeup — Storm What are my input sources? At what rate do they deliver messages? What size are the messages? What's my slowest data sink?
  • 43. There is no magic bullet.
  • 44. But there are good starting points.
  • 46. 1 Worker / Machine / Topology Keep unnecessary network transfer to a minimum
  • 47. 1 Acker / Worker Default in Storm 0.9.x
  • 48. 1 Executor / CPU Core Optimize Thread/CPU usage
  • 49. 1 Executor / CPU Core (for CPU-bound use cases)
  • 50. 1 Executor / CPU Core Multiply by 10x-100x for I/O bound use cases
  • 51. Example 10 Worker Nodes 16 Cores / Machine 10 * 16 = 160 “Parallelism Units” available
  • 52. Example 10 Worker Nodes 16 Cores / Machine 10 * 16 = 160 “Parallelism Units” available ! Subtract # Ackers: 160 - 10 = 150 Units.
  • 53. Example 10 Worker Nodes 16 Cores / Machine (10 * 16) - 10 = 150 “Parallelism Units” available
  • 54. Example 10 Worker Nodes 16 Cores / Machine (10 * 16) - 10 = 150 “Parallelism Units” available (* 10-100 if I/O bound) Distrubte this among tasks in topology. Higher for slow tasks, lower for fast tasks.
  • 55. Example 150 “Parallelism Units” available Emit Calculate Persist 10 40 100
  • 56. Watch Storm’s “capacity” metric This tells you how hard components are working. Adjust parallelism unit distribution accordingly.
  • 57. This is just a starting point. Test, test, test. Measure, measure, measure.
  • 60. Key Settings topology.max.spout.pending Spout/Bolt API: Controls how many tuples are in-flight (not ack’ed) Trident API: Controls how many batches are in flight (not committed)
  • 61. Key Settings topology.max.spout.pending When reached, Storm will temporarily stop emitting data from Spout(s) WARNING: Default is “unset” (i.e. no limit)
  • 62. Key Settings topology.max.spout.pending Spout/Bolt API: Start High (~1,000) Trident API: Start Low (~1-5)
  • 63. Key Settings topology.message.timeout.secs Controls how long a tuple tree (Spout/Bolt API) or batch (Trident API) has to complete processing before Storm considers it timed out and fails it. Default value is 30 seconds.
  • 64. Key Settings topology.message.timeout.secs Q: “Why am I getting tuple/batch failures for no apparent reason?” A: Timeouts due to a bottleneck. Solution: Look at the “Complete Latency” metric. Increase timeout and/or increase component parallelism to address the bottleneck.
  • 65. Turn knobs slowly, one at a time.
  • 66. Don't mess with settings you don't understand.
  • 67. Storm ships with sane defaults Override only as necessary
  • 69. Nimbus Generally light load Can collocate Storm UI service m1.xlarge (or equivalent) should suffice Save the big metal for Supervisor/Worker machines…
  • 70. Supervisor/Worker Nodes Where hardware choices have the most impact.
  • 71. CPU Cores More is usually better The more you have the more threads you can support (i.e. parallelism) Storm potentially uses a lot of threads
  • 72. Memory Highly use-case specific How many workers (JVMs) per node? Are you caching and/or holding in-memory state? Tests/metrics are your friends
  • 73. Network Use bonded NICs if necessary Keep nodes “close”
  • 76. Don’t “Pancake!” Separate concerns. CPU Contention I/O Contention Disk Seeks (ZooKeeper)
  • 77. Keep this guy happy. He has big boots and a shovel.
  • 78. ZooKeeper Considerations Use dedicated machines, preferably bare-metal if an option Start with 3 node ensemble (can tolerate 1 node loss) I/O is ZooKeeper’s main bottleneck Dedicated disk for ZK storage SSDs greatly improve performance
  • 79. Recap Know/track your latencies and code appropriately Externalize configuration Scaling is a factor of balancing the I/O and CPU requirements of your use case Dev + DevOps + Ops coordination and collaboration is essential
  • 80. Thanks! P. Taylor Goetz, Hortonworks @ptgoetz