CEPECH: Matemáticas Guía N°1 [3° Medio] (2012)

3,981 views

Published on

Guía N°1 de matemáticas del Preuniversitario CEPECH. Año 2012.

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,981
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
131
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

CEPECH: Matemáticas Guía N°1 [3° Medio] (2012)

  1. 1. SGUC3AMTA04001V2 NÚMEROS ENTEROS Y RACIONALES GUIA DE NIVELACIÓN Números enteros y racionales 1
  2. 2. Estimado alumno:Aquí encontrarás las claves de corrección, las habilidades y los procedimientos deresolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje esfundamental que asistas a la corrección mediada por tu profesor, ya que sólo en estainstancia podrás resolver cualquier duda subyacente. CLAVES DE CORRECCIÓN GUÍA NÚMEROS ENTEROS Y RACIONALES PREGUNTA ALTERNATIVA Nivel 1 B Aplicación 2 C Análisis 3 E Aplicación 4 A Análisis 5 C Análisis 6 B Aplicación 7 B Aplicación 8 E Comprensión 9 E Aplicación 10 D Comprensión 11 B Aplicación 12 D Aplicación 13 E Aplicación 14 C Aplicación 15 B Análisis 16 B Análisis 17 A Análisis 18 E Análisis 19 E Evaluación 20 A Evaluación 2
  3. 3. 1. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad AplicaciónLos divisores de 32 son 1, 2, 4, 8, 16 y 32, y los múltiplos de 4 son 4, 8, 12, 16, 20, 24,28 y 32, y los elementos comunes de ambos son 4, 8, 16 y 32, por lo tanto la respuestaes 4. 2. La alternativa correcta es C.Sub-unidad temática Conjuntos numéricosHabilidad Análisis I) Falsa, ya que un número elevado al cuadrado NO siempre es divisible por 2. Ejemplo: 32 = 9, NO es divisible por 2. II) Verdadera, por regla de divisibilidad. III) Falsa, ya que el producto de dos números impares consecutivos NO es siempre múltiplo de 5. Ejemplo: 1 ∙ 3 = 3, NO es múltiplo de 5. 3. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad AplicaciónLa secuencia 2, 3, 5, 7, 11, 13, 17, 19, ….., corresponde a los números primos,entonces:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 33, …..El décimo término es 29. 3
  4. 4. 4. La alternativa correcta es A.Sub-unidad temática Conjuntos numéricosHabilidad AnálisisIdon, 1 cada 8 horasCiprofloxacino, 1 cada 12 horasParacetamol, 1 cada 6 horasPara determinar a qué hora tomará nuevamente los tres remedios juntos, debemoscalcular el m.c.m. entre 6, 8 y 12, entonces:6 8 12 23 4 6 23 2 3 23 1 3 31 1m.c.m. = 2 ∙ 2 ∙ 2 ∙ 3 = 24 horasEntonces, si comenzó a las 16:00 horas, nuevamente tomará los tres remedios juntos alas 16:00 horas del día siguiente. 5. La alternativa correcta es C.Sub-unidad temática Conjuntos numéricosHabilidad Análisis2 trozos de cinta, uno de 45 cm y el otro de 60 cm.Entonces, para determinar cuánto debería medir cada nuevo trozo, sin que sobre cinta,debemos calcular el M.C.D entre 45 y 60, entonces:45 60 5 9 12 3 3 4M.C.D. = 5 ∙ 3 = 15 cmPor lo tanto, cada nuevo trozo debe medir 15 cm. 4
  5. 5. 6. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad AplicaciónHay 96 chocolates en la caja. Si dos chocolates valen $ 500, entonces los 96 chocolatescuestan $ 24.000 pesos. La mitad de los chocolates por lo tanto equivalen a $ 12.000. 7. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad Aplicación20 – 30 ∙ 2,5 + 55 = (Multiplicando)20 – 75 + 55 = (Resolviendo) 0 8. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad ComprensiónEl antecesor de un número n es (n – 1).El triple del número n menos 3 unidades el número es (3n – 3).Si analizamos cuántas veces debemos multiplicar el “número” (n – 1) para obtener el“número” (3n – 3), nos damos cuenta que se debe multiplicar por 3 el número inicial. 9. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad AplicaciónEl sucesor de p es (p + 1) y el antecesor de q es (q – 1).Luego, a (p + 1) debemos sumar (q – p – 2) para obtener (q – 1). 5
  6. 6. 10. La alternativa correcta es D.Sub-unidad temática Conjuntos numéricosHabilidad Comprensión3 1 – = (Determinando el m.c.m. entre 8 y 4 y resolviendo)8 43 2 = 8 1 8 11. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad AplicaciónInicialmente tenía $ 30.000 1 1 30.000Gastó de 30.000 = ∙ 30.000 = = 7.500 4 4 4Al restar $ 7.500 de $30.000, nos queda $ 22.500. 1 1 22.500Luego, perdió de $ 22.500 = ∙ 22.500 = = 7.500 3 3 3Al restar $ 7.500 de $22.500, nos queda $ 15.000 1 1 15.000Después regaló de $ 15.000 = ∙ 15.000 = = 3.000 5 5 5Al restar $ 3.000 de $ 15.000, nos queda finalmente $ 12.000 6
  7. 7. 12. La alternativa correcta es D.Sub-unidad temática Conjuntos numéricosHabilidad Aplicación 32 2= 0,843 2 = 8 10 1 2= 4 5 5 8 5Al transformar a decimal resulta 0,625 8 13. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad Aplicación56 2  (Resolviendo)3 1 1 45 1 2    (Multiplicando y dividiendo)6 3 3 4 5 4  2  (Mutiplicando)18 3 5 8   (Determinando el m.c.m. y resolviendo)18 35  48  18  43 18 7
  8. 8. 14. La alternativa correcta es C.Sub-unidad temática Conjuntos numéricosHabilidad Aplicación 5Hay 180 frutas. Debemos encontrar los de 180 para saber el total de piñas. 6 5 ∙ 180 = (Simplificando y multiplicando) 6 150 3Hay 150 piñas. Debemos encontrar los de 30 para saber el total de peras. 53 ∙ 30 = (Simplificando y multiplicando)5 18Al restar 150 y 18 resulta 132. 15. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad Análisis I) Verdadera, ya que: 4 7  (Dividiendo) 8 3 4 3   (Simplificando) 7 8 1 3   (Multiplicando) 7 2 3 14 II) Verdadera, ya que: 0, 45  (Transformando a fracción) 45  (Simplificando) 99 15 33 8
  9. 9. III) Falsa, ya que: 6 4 ? (Multiplicando cruzado) 5 3 18 < 20 16. La alternativa correcta es B.Sub-unidad temática Conjuntos numéricosHabilidad AnálisisAnalicemos las afirmaciones: 23 5 3 I) NO es equivalente, ya que = ≠ . 24 8 4 II) NO es equivalente, ya que al transformar 0, 32 y 0, 43 a fracciones y luego 32 43 75 25 3 sumarlas resulta   = ≠ . 99 99 99 33 4 1 3 9 6 3 III) Es equivalente, ya que 2  =   . 4 2 4 4 4 17. La alternativa correcta es A.Sub-unidad temática Conjuntos numéricosHabilidad AnálisisSi Paula comenzó el lunes a pintar la pared, entonces 2 - el lunes pintó de la pared. 9 2 - el martes pintó de la pared. 9 2 4 - el miércoles pintó el doble de de la pared, es decir . 9 9 2 2 4 8 Hasta el miércoles llevaba pintado    de la pared. 9 9 9 9 Por lo tanto, siguiendo lo que pinta diariamente terminará la pared hoy miércoles. 9
  10. 10. 18. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad Análisis 9 9 9 39, , 3, , , , ….. 2 4 5 29 9 9 9 9 9 9 9 9 , , , , , , , , ,...1 2 3 4 5 6 7 8 9Por lo tanto: 9 I) Verdadera, ya que = 1. 9 II) Verdadera, ya que todos los números se pueden escribir como fracción. III) Verdadera, ya que todos los números que ocupan una posición par son negativos. 19. La alternativa correcta es E.Sub-unidad temática Conjuntos numéricosHabilidad Evaluación(1) Se sabe que el número es múltiplo de 12. Con esta información y la del enunciado, no es posible determinar el número elegido, ya que los múltiplos de 12 menores que 30 son 12 y 24 y puede ser cualquiera de los dos.(2) Se sabe que el dígito de las unidades es el doble de las decenas. Con esta información y la del enunciado, no es posible determinar el número elegido, ya que los números menores que 12 donde el dígito de las unidades es el doble de las decenas son el 12 y el 24 y puede ser cualquiera de los dos.Con ambas informaciones, no es posible determinar el número elegido ya que tenemosdos: 12 y 24. Por lo tanto, la respuesta es: Se requiere información adicional. 20. La alternativa correcta es A.Sub-unidad temática Conjuntos numéricosHabilidad Evaluación (1) El triple de m es par. Con esta información, es posible determinar que el número entero m es par, ya que el triple de m es par sólo si m es par. 10
  11. 11. (2) El séxtuple de m es par. Con esta información no es posible determinar que el número entero m es par, ya que cualquier número entero m si lo multiplicamos por 6 es un número par.Por lo tanto, la respuesta es: (1) por sí sola. . 11

×