Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

PDV: Biologia mencion Guía N°30 [4° Medio] (2012)

5,650 views

Published on

Guía N°30 de Biologia mencion del Preuniversitario PDV. Año 2012.

  • Be the first to comment

PDV: Biologia mencion Guía N°30 [4° Medio] (2012)

  1. 1. BIOLOGIA MENCIÓN BM-30U N I D A D IV: G E N É T I C A GENÉTICA I Segregación de los alelos en los espermatozoides espermatozoides 1/2 R 1/2 r R R 1/2 R R r 1/4 1/4 óvulos r r R r 1/2 r 1/4 1/4
  2. 2. INTRODUCCIÓNLa genética es considerada como una disciplina relativamente nueva en el campo de la Biología. Sise quisiera establecer una edad para esta ciencia tan importante en el estudio de los seres vivos,ella no alcanzaría todavía al siglo desde que las ciencias biológicas comprendieron que tras ella seencerraba un mundo inimaginable de perspectivas para conocer y dominar la esencia de la vida.Nadie niega hoy que, sin menospreciar los esfuerzos que le precedieron, la genética nace conGregor Mendel (1822-1884), quien descubrió lo que hoy día conocemos como las “Leyes de laHerencia”. Sus trabajos, que describiremos más adelante como la base de la llamada GenéticaClásica, no fueron valorados por el mundo científico de la época, sino hasta los inicios del siglopasado.1. MÉTODOS DE MENDELMuchos científicos antes de Mendel habían tratado de elucidar cómo se heredan las característicasbiológicas. Habían cruzado plantas o animales y observado detenidamente las semejanzas entre laprogenie y sus progenitores. Los resultados fueron confusos, la progenie era semejante a unprogenitor en algunos rasgos, al otro progenitor en otros y claramente no se asemejaba a ningunoen otros rasgos. No fue posible descubrir regularidades precisas. Mendel tuvo éxito en donde otros investigadores habían fracasado. Estableció la necesidad de prestar atención a un solo rasgo cada vez, por ejemplo la forma de la semilla, en lugar de considerar todas las características de la planta. Con este propósito seleccionó siete caracteres que se diferenciaban de forma muy clara (Figura 1), y se aseguró que estas fueran variedades puras. Otro hecho importante del trabajo de Mendel fue su enfoque cuantitativo, contó el número de las progenies de cada clase con el propósito de descubrir si los portadores de los rasgos en estudio aparecían siempre en la misma proporción. El método mendeliano de análisis genético todavía se utiliza actualmente. Revisemos ahora los experimentos de Mendel, las leyes básicas de la herencia derivada de los experimentos, la teoría que explica estas leyes y los resultados experimentales.Figura 1. Los siete caracteres estudiados por Mendelen la planta de arveja Pisum sativum. 2
  3. 3. 2. LEYES DE MENDELConviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre lapresencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de loscromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajosde Mendel. Primera ley de Mendel o de la segregación (Monohibridismo)Enunciado de la ley: “Los factores (genes alelos) para cada carácter segregan o se separan(anafase I) en iguales proporciones en el momento de la formación de gametos y terminan por lotanto en distinta descendencia”.Dos corolarios importantísimos derivan de esta ley: 1) La herencia es particulada, vale decir, los genes no se mezclan al pasar de una generación a la que sigue. 2) Los gametos son siempre puros, no existen gametos híbridos. El experimento de Mendel. Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían semillas amarillas y con una variedad que producía semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre una llamada generación filial (F1) compuesta en un 100% de plantas con semillas amarillas. Para llevar a cabo la segunda parte de su experimento, Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior (Figura 2) y las polinizó entre sí. Del cruce obtuvo plantas productoras de semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación (F2).Figura 2. El experimento de Mendel que lo llevó a enunciar su primera ley. 3
  4. 4. Interpretación del experimento (Figura 3). El polen de la planta progenitora aporta a ladescendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta elotro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquel que esdominante (A), mientras que el recesivo (a) permanece oculto.Los dos alelos distintos para el color de la semilla presentes en los individuos de la primerageneración filial (F1), no se han mezclado ni han desaparecido, simplemente ocurría que semanifestaba solo uno de los dos. Cuando el individuo de fenotipo amarillo (genotipo Aa) formabalos gametos, se separaban sus alelos mediante el proceso de meiosis, de tal forma que en cadagameto solo está presente uno de los alelos y así se pueden explicar los resultados obtenidos. Figura 3. Cruzamiento monohíbrido y representación en un tablero de Punnett.OBSERVACIÓN: Cuando repasamos cuidadosamente el experimento de Mendel podemos fijar nuestra atención en dos aspectos distintos presentes en los descendientes de cada generación. Fácilmente podemos determinar la característica externa (Fenotipo) que presenta cada individuo en cada generación pero, ¿podríamos decir lo mismo a la hora de determinar sus características genéticas (Genotipo)? En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentan un fenotipo amarillo. 4
  5. 5. El cruzamiento de prueba o retrocruza sirve para diferenciar el individuo homocigoto delheterocigótico y consiste en cruzar el fenotipo dominante (proveniente, por ejemplo, de unindividuo de la F1) con la variedad homocigota recesiva (aa):  Si es homocigótico, toda la descendencia será igual (Figura 4).  Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50% (Figura 5). 50% Híbrido (Aa) 50% Homocigoto recesivo (aa) Ejercicios (Herencia de un carácter)1. Juan tiene un gato negro llamado Sam. Cuando Juan cruza a Sam con una hembra blanca, obtiene una camada de ½ de gatitos blancos y ½ de gatitos negros, al cruzar estos gatitos negros entre ellos, originan ¾ de gatitos negros y ¼ de gatitos blancos. Al respecto, conteste a) ¿Cuál es el genotipo del gato Sam y la hembra blanca? b) ¿Cuál es el genotipo de los gatitos negros, hijos de Sam y la gata blanca? 5
  6. 6. 2. En los pepinos, el color naranja de la fruta (R) es dominante sobre el color crema (r). Una planta de pepinos homocigótica para las frutas color naranja se cruza con una planta homocigótica para las frutas color crema. Se cruza la F 1 consigo misma para producir la F2. Al respecto, conteste a) ¿Cuáles son los genotipos de los padres homocigotos? b) ¿Cuál es el genotipo de F1? c) Al cruzar F1 consigo misma, ¿cuál es la proporción genotípica y fenotípica de F2? d) Es correcto plantear que en F2: Hay un 50% de homocigotos y un 50% de heterocigotos. Un 75% porta el gen recesivo. Un 75% porta el gen dominante.3. Una mujer presenta un tipo de enanismo llamado acondroplasia, y está determinada por el gen dominante E. El padre de esta mujer también presenta enanismo, y la madre tiene estatura normal. ¿Cuáles son los genotipos más probables del padre, la madre y la mujer? 6
  7. 7. Gregor Mendel publicó los resultados de sus estudios genéticos con la arveja en 1866 y de estemodo estableció los fundamentos de la genética moderna. En su trabajo, Mendel propusoalgunos principios genéticos básicos. Uno de ellos se conoce como el Principio de Segregación. Elencontró que de cualquier progenitor solo una forma alélica de un gen es transmitida a ladescendencia a través de los gametos. Por ejemplo, una planta que tiene un factor (gen) para lasemilla lisa y también uno para la semilla rugosa deberá transmitir a su descendencia solo uno delos dos alelos a través de un gameto. Mendel no sabía nada de cromosomas o de la meiosis ya queesto no había sido aún descubierto. Actualmente se sabe que la base física de este principio estáen la primera anafase meiótica donde los cromosomas homólogos se segregan o separan uno delotro. Si el gen para la semilla lisa está en un cromosoma y su forma alélica para la semillarugosa está en su homólogo, resulta claro que los dos alelos no pueden encontrarse normalmenteen el mismo gameto. Anafase I Meiótica Un organismo diploide posee dos alelos ubicados en diferentes cromosomas homólogos. 7
  8. 8. Segunda ley de Mendel o de la distribución independiente (Dihibridismo)Enunciado de la ley: “Los factores determinantes de los distintos caracteres se combinanindependientemente unos con otros segregando al azar en los gametos resultantes”. Esta ley noes tan universal como la ley de la segregación, porque se aplica a los genes que se ubican encromosomas distintos (no homólogos), pero no necesariamente a los que se ubican en el mismocromosoma (ligados). Sin embargo es correcto decir que los cromosomas se distribuyen en formaindependiente durante la formación de los gametos (permutación cromosómica), de la mismamanera que los hacen dos genes cualquiera en pares de cromosomas no homólogos.El experimento de Mendel: cruzó plantas de guisantes de semilla amarilla y lisa conplantas de semilla verde y rugosa (Homocigóticas para los dos caracteres) (Figura 6). P X AABB aabb Gametos AB ab F1 AaBbFigura 6. Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así laprimera ley para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantespara esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y queconstituyen la F1 son dihíbridas (AaBb). 8
  9. 9. Las plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una delas plantas (Figura 7). Se puede apreciar que los alelos de los distintos genes se transmiten conindependencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantesamarillos y rugosos y otros que son verdes y lisos, combinaciones no encontradas ni en lageneración parental (P), ni en la filial primera (F1). Los resultados obtenidos para cada unode los caracteres considerados por separado, responden a la segunda ley (Figura 8). F1 Aa Bb A a B b AB Ab aB ab Gametos posibles Figura 7. Gametos que formará el individuo dihíbrido (AaBb) de la F1.Interpretación del experimento: Los resultados de los experimentos de la segunda leyrefuerzan el concepto de que los genes son independientes entre sí, que no se mezclan nidesaparecen generación tras generación. Para esta interpretación fue providencial la elección delos caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de quelos dos caracteres a estudiar estén regulados por genes que se encuentran en distintoscromosomas. 9
  10. 10. 9/16 3/16 3/16 1/16 A_B_ A_bb aaB_ aabb Figura 8. Proporciones fenotípicas resultantes de una cruza entre dos individuos dihíbridos (AaBb).Cruzamiento de pruebaAl hacer un cruzamiento de prueba a un dihíbrido (de la F1) se obtiene una descendenciarepresentada por 4 fenotipos distintos que siguen una proporción fenotípica de 25% cada uno. 1 : 1 : 1 : 1 Figura 9. Cruce de prueba dihíbrido. 10
  11. 11. Ejercicios (Herencia de dos caracteres)En las arvejas, la flor púrpura (P) es dominante sobre el color blanco (p), y el tamaño alto de laplanta (T) es dominante sobre la enana (t).a) Se cruzan plantas homocigóticas de flores púrpuras y enanas, con plantas homocigóticas de flores blancas y altas. ¿cómo es el genotipo y fenotipo de la descendencia F1?b) Al cruzar descendientes de F1 entre sí, se originan en F2 640 plantas de arvejas. Al respecto, conteste ¿Cuántos descendientes serán doble homocigotos? ¿Cuántos descendientes serán doble heterocigotos? La proporción de los siguientes fenotipos será:  Flor púrpura y altas.  Flor púrpura y enanas.  Flor blanca y altas.  Flor blanca y enanas. 11
  12. 12. 2. EL albinismo es una enfermedad recesiva autosómica (a), y la miopía es una enfermedad dominante autosómica (M), señale la descendencia en los siguientes cruces: a) Hombre albino, miope heterocigoto x mujer pigmentada homocigota, miope heterocigota. b) Hombre albino, miope heterocigoto x mujer pigmentada heterocigota y visión normal. c) Hombre albino, miope heterocigoto x mujer pigmentada homocigota y visión normal.3. Si en cruzamiento se obtienen los siguientes resultados: 25% planta alta de hojas largas. 25% planta alta de hojas recortadas. 25% planta enana de hojas largas. 25% planta enana de hojas recortadas a) El genotipo más probable de sus padres será: b) ¿Cómo se denomina este tipo de cruce? 12
  13. 13. El Principio de la distribución independiente de Mendel, establece que lasegregación de un par de factores ocurre independientemente de la decualquier otro par. Por ejemplo, en un par de cromosomas homólogos estánlos alelos para el color de la semilla: amarilla y verde y en el otro par dehomólogos están los alelos para la forma de la misma: lisa y rugosa. A: amarilla a: verde B: lisa b: rugosaLa segregación de los alelos para el color de la semilla ocurreindependientemente de la segregación de los alelos para la forma, porquecada par de homólogos se comporta como una unidad independiente durantela meiosis. Además debido a que la orientación de los bivalentes en laprimera placa metafásica es completamente al azar, cuatro combinacionesde factores pueden encontrarse en los productos meióticos: amarilla-lisa amarilla-rugosa verde-lisa verde-rugosaEn la actualidad se sabe que esto es cierto solo para los loci localizados encromosomas homólogos distintos y no para los genes ligados; que seestudiarán a continuación. Genes ligados 13
  14. 14. 3. GENES LIGADOSCuando dos o más genes se encuentran en el mismo cromosoma, se dice que están ligados,pueden estarlo en los autosomas o en los sexuales. Los genes que están en el mismo cromosomatienden a permanecer juntos durante la formación de gametos, por lo tanto, los resultados de loscruzamientos de prueba de individuos dihíbridos producen resultados diferentes.Los genes que están en cromosomas homólogos diferentes se distribuyen de maneraindependiente, por lo que los resultados de los cruzamientos de prueba de dihíbridos dan unaproporción de 1:1:1:1 1 : 1 : 1 : 1 Figura 10. Cruce de prueba cuando los genes están en diferentes pares de homólogos.En cambio, cuando los genes están ligados no se distribuyen de manera independiente, sino quetienden a permanecer juntos en las mismas combinaciones en las que se encontraban en losprogenitores, de esta manera los resultados de cruzamientos de prueba de individuos dihíbridoscon genes ligados da por resultado una proporción de 1:1. 1 : 1 Figura 11. Cruce de prueba cuando los genes están ligados. 14
  15. 15. Recombinación entre genes ligadosEn la progenie de un cruzamiento dihíbrido, las desviaciones importantes de una proporción1:1:1:1 deben considerarse como evidencia de ligamientos sin embargo, los genes ligados nosiempre permanecen juntos, debido a que las cromátidas no hermanas (homólogas) puedenintercambiar segmentos de longitud variables durante la profase meiótica. No olvidar que loscromosomas homólogos se aparean e intercambian segmentos durante el crossing-over, por loque producen gametos con combinaciones únicas.Figura 12. (a), un par de cromosomas homólogos con genes ligados están iniciando un entrecruzamiento.(b), el par de cromosomas homólogos ha terminado el entrecruzamiento y los genes ligados se hanseparado. (c), se presentan los cromosomas resultantes una vez terminada la segunda división meiótica,los cromosomas parentales se encuentran a los extremos y los recombinantes al centro.Los productos meióticos AB y ab tienen los genes ligados en la misma forma que en loscromosomas parentales. Los otros dos productos meióticos Ab y aB resultantes delentrecruzamiento han recombinado las relaciones de ligamiento originales de los progenitores ennuevas formas llamadas recombinantes.La frecuencia con que se produce un entrecruzamiento (quiasma) entre dos loci genéticos tieneuna probabilidad característica, mientras más alejados se encuentren dos genes en uncromosoma, mayor es la oportunidad para que se produzca un entrecruzamiento entre ellos, encambio cuando los genes están más cercanos hay una probabilidad menor de entrecruzamiento.Estas probabilidades son útiles para predecir las proporciones de gametos parentales que seesperan que se formen a partir de un genotipo dado. El porcentaje de gametos recombinantesformados a partir de un genotipo dado, es un reflejo directo de la frecuencia con la cual se formanentrecruzamientos entre los genes en cuestión.De todas maneras aunque exista crossing-over, al realizar un cruce de prueba de un dihíbridocon genes ligados (cruzamiento entre un dihíbrido y un padre recesivo), la proporción fenotípicade la descendencia no será 1:1:1:1, sino que será siempre mayor la proporción de descendenciacon fenotipos parentales, como por ejemplo: Amarillas lisas 40% Amarillas rugosas 10% Verdes lisas 10% Verdes rugosas 40% 15
  16. 16. GLOSARIOAlelos: cada una de las alternativas que puede tener un gen o formas alternas de un gen, queocupan el mismo locus (lugar) en cada cromosoma homólogo.Autosoma: Cualquier cromosoma que no sea un cromosoma sexual. Los seres humanos tienen ensus células 22 pares de autosomas y un par de cromosomas sexuales.Cromosoma: La estructura que lleva los genes. Los cromosomas eucarióticos son filamentos obastones de cromatina que aparecen contraídos durante la mitosis y la meiosis y que en otrosmomentos están contenidos en un núcleo. Los cromosomas procarióticos consisten en un círculode DNA con el que se asocian varias proteínas. Los cromosomas virales son moléculas lineales ocirculares de DNA o RNA.Cromosomas homólogos: Una de las dos copias de un determinado cromosoma de una céluladiploide, derivando cada copia de cada uno de los padres.Genes: Unidades hereditarias que conforman los cromosomas. Estos segmentos específicos deDNA controlan las estructuras y funciones celulares, también se define como unidad funcional dela herencia. Secuencia de bases de DNA que usualmente codifican para una secuenciapolipeptídica de aminoácidosGenotipo: constitución genética o conjunto de genes que posee un individuo.Heterocromosoma: corresponden a los cromosomas sexuales (diferentes) X e Y, los cualesdeterminan el sexo del individuo.Fenotipo: es el resultado de dos fuerzas; los genes heredados y la acción del medio ambienteque determina la posibilidad que el gen se exprese o no. Fenotipo = Genotipo+ Ambiente.Homocigoto: significa que posee dos copias idénticas de ese gen para un rasgo dado en los doscromosomas homólogos, puede ser dominante AA o recesivo aa.Heterocigoto o Híbrido: es cuando un individuo tiene un alelo dominante y un alelo recesivo enlos cromosomas homólogos (Aa)Segregación: separación de cromosomas homólogos durante la anafase meiótica.Generación Filial: Generación de individuos productos de cruzamientos. La primera generaciónse denomina F1, la segunda generación F2 y así sucesivamente. Son relativos a la generaciónparental.Genes alelos: Par de genes que actúan sobre una misma característica en un individuo, estos seubican en el mismo sitio físico pero en distintos cromosomas homólogos, por ejemplo; el color delas semillas de arveja amarillo y verde, estos pares de genes se designan comúnmente por letrascomo AA, Aa y aa.Gen dominante: Es aquel gen que siempre se expresa ya sea en su forma heterocigota Aa,como en su forma homocigota AA.Gen recesivo: Es aquel que solo logra expresarse cuando se encuentra en forma homocigotarecesiva aa. 16
  17. 17. Preguntas de selección múltiple1. Se cruza un individuo heterocigoto con otro homocigoto recesivo. Al respecto, es correcto afirmar que I) todos los descendientes portan el alelo recesivo. II) el 50% son homocigotos. III) el 50% porta el alelo dominante. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) I, II y III.2. Se cruzan gatos con el mismo genotipo y fenotipo y originan una camada de 6 gatos negros y 2 blancos. Al respecto, es correcto afirmar que los I) progenitores son heterocigotos. II) gatos blancos de la camada son homocigotos recesivos. III) los gatos negros de la camada necesariamente tienen el genotipo de los padres. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) I, II y III.3. El número de tipos de gametos para un genotipo dado, puede ser calculado mediante la fórmula 2n, donde n representa el número de alelos distintos. Entonces un individuo de genotipo AABbCCDDEe, producirá el siguiente número de gametos diferentes. A) 2. B) 4. C) 8. D) 16. E) 32.4. En la oveja, la lana brillante (L) es producida por un alelo que es dominante sobre el alelo para la lana normal. Una oveja hembra adulta con lana brillante se aparea con un macho adulto de lana normal y en la primera camada resultante se obtienen solo ovejas de lana brillante. A partir de estos datos se puede afirmar correctamente que el genotipo I) del macho adulto es hibrido. II) de la camada es 100% heterocigoto. III) de la hembra es homocigoto dominante. A) Solo I. B) Solo II. C) Solo III. D) Solo I y III. E) Solo II y III. 17
  18. 18. 5. En los ratones, un alelo para los ojos color damasco es recesivo respecto del marrón. En un locus que se distribuye en forma independiente, un alelo para el color tostado del pelaje es recesivo respecto del pelaje negro. Se cruza un ratón que es homocigótico para los ojos marrones y para el color del pelaje negro, con otro que posee ojos de color damasco y pelaje tostado. Los F1 resultantes se cruzan entre sí para producir la F2. En una camada de treinta y dos ratones F2. ¿Cuántos serán de pelaje color tostado y de ojos marrones? A) 9 B) 6 C) 3. D) 2. E) 1.6. En los seres humanos, la alcaptonuria es una alteración metabólica en la cual las personas afectadas producen orina negra y problemas neurológicos. La alcaptonuria está determinada por un alelo (a) que es recesivo respecto del alelo para el metabolismo normal (A). Sally tiene un metabolismo normal, pero su hermano tiene alcaptonuria. El padre de Sally tiene alcaptonuria y su madre tiene un metabolismo normal. Respecto a los genotipo de la familia es correcto señalar que I) Sally posee el alelo recesivo. II) la madre de Sally es heterocigota. III) el hermano y el padre de Sally son homocigotos dominantes. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo I y III.7. En los cobayos, el alelo para el pelaje negro (B) es dominante sobre el alelo para el marrón (b). Se cruza un cobayo negro con uno marrón y producen en F 1 cinco cobayos F1 negros y seis marrones. Si los cobayos negros F1 se cruzaran con cobayos negros homocigotos, la descendencia esperada seria de un I) 100 % de cobayos de pelaje negro. II) 50 % de homocigotos y un 50% de heterocigotos. III) 75% de cobayos de pelaje negro y un 25 % de cobayos de pelaje marrón. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo II y III.8. En las arvejas de Mendel, el color de las semillas está codificado por un gen con un alelo amarillo dominante y otro alelo verde recesivo. Si en un cruce se obtuvo una cantidad de 118 semillas amarillas y 42 semillas verdes, el genotipo más probable de los progenitores es A) AA x aa B) AA x Aa C) Aa x aa D) Aa x Aa E) aa x aa 18
  19. 19. 9. ¿Cuál(es) de las siguientes alternativas completa(n) correctamente el siguiente enunciado? “La relación fenotípica 9 : 3 : 3 : 1 es característica de la generación F 2 de un cruzamiento dihíbrido con dominancia, en el cual I) cada una de las características está determinada por un par de genes autosómicos. II) se producen cuatro tipos de gametos con la misma frecuencia en ambos sexos. III) la segregación de un par de genes ocurre independiente de cualquier otro. Es (son) correcta(s) A) solo I. B) solo II. C) solo III. D) solo I y II. E) I, II y III.10. Los cuyes de pelaje negro y áspero, dominan sobre los de pelaje blanco y suave. Si al cruzar ejemplares puros, la primera generación, es 100% dihíbrida, la probabilidad de que en la segunda generación aparezcan cuyes blancos y suaves es de A) 6.25 % B) 12.50 % C) 25.00 % D) 50.00 % E) 75.00 %11. En humanos los gemelos constituyen un buen modelo de estudio ya que A) permite saber el efecto del fenotipo sobre el genotipo. B) es posible estudiar el efecto del ambiente sobre los homocigotos. C) como ambos tienen igual genotipo es más fácil entender el efecto del ambiente. D) como ambos tiene el mismo sexo es más fácil comprender la herencia ligada al sexo. E) permite obtener clones de un mismo genotipo y con ello entender mejor las leyes de la herencia.12. Sobre el genotipo y fenotipo, es correcto afirmar que el I) efecto del ambiente es producido principalmente sobre los genes dominantes que sobre genes recesivos. II) mismo ambiente influye de manera tal que frente a un mismo genotipo se puede manifestar con diferentes fenotipos. III) genotipo representa todos los genes responsables que fabrican las proteínas, los lípidos y los carbohidratos que requiere el organismo de un ser vivo. A) Solo I. B) Solo III. C) Solo I y II. D) Solo II y III. E) I, II y III. 19
  20. 20. 13. En la herencia de una enfermedad dominante se cumple necesariamente que A) no nacerán la mitad de los individuos. B) todo individuo afectado tiene al menos un progenitor afectado. C) todo progenitor afectado genera descendientes afectados y normales. D) la enfermedad puede aparecer en los descendientes de dos personas normales. E) solo si ambos progenitores están afectados, sus descendientes también lo están.14. Para que al menos un hijo presente un carácter recesivo, los genotipos de los progenitores deben ser I) ambos heterocigotos. II) uno heterocigoto y el otro homocigoto recesivo. III) uno homocigoto dominante y el otro heterocigoto. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo I y III.15. Al cruzar un dihomocigoto dominante, con un dihíbrido es correcto esperar una descendencia I) 100% dominante. II) 75% dominante y 25% recesivos. III) con un 25% de dihomocigotos. A) Solo I. B) Solo II. C) Solo III. D) Solo I y III. E) Solo II y III. RESPUESTAS Preguntas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Claves E D B E B D D D E A C B B D D DMDO-BM30 Puedes complementar los contenidos de esta guía visitando nuestra Web http://www.pedrodevaldivia.cl/ 20

×