AAAS feb15 2015 Physical Biomodeling and Foldable, Coarse-Grained Physical Model of Polypeptide Chain

P
Physical Biomodeling and
Foldable, Coarse-Grained
Physical Model of Polypeptide
Chain
Promita Chakraborty
Feb 15, 2015
AAAS Annual Meeting 2015, San Jose
Symposium: Emerging Trends inVisualizing Physical Models
and Rapid Prototyping for Biological Systems
1
2
A vision: Dynamic physical models of
macromolecules that fold and convey
information
BioTable
Computer interface and physical models
• BioTable is a computer monitor
• An interactive unit for translation
• Idea was to detect foldable
models and molecule-molecule
interaction with computers +
head-mount cameras
3
Dynamic backbone, amino
acids and proteins
4
!"#$%&'()*'+"',#"&-.(/0,#"'*(1'&'".(2&030(4'""%5#6.(7"'68%5(9:0+
!"#$%&'"(&)*+),*'#-&"%)./0"(/"1)20%30(0$)4"/51)67$/89:-%31)20%30(0$1);.<
!"#$%&'()*"$+#,-'./01+0!23
!"#$%&'()*$%+$,")-&"%.$*/+0("12"3'1)&+$"214%+$,5"'*)-&'")-*$"1$4.")-&"2+$*4"214%&%"()*)&
!"613+$,"21'"*"%&&3&'"7$%&'()*$%+$,"12"+$)&'*0)+1$"8&)9&&$"*/+$1"*0+%(
!":1)+;*)+$,"/+%%4&<(0-114"0-+4%'&$")1"4&*'$"27$%*/&$)*4"8+141,."!"#$%&'()*$%+$,"-19")-&.",'*(3"01/34&=")-17,-)(
=*&0>$&0*(
!" >" )*$,+84&" +$)&'2*0&" )1" -&43" ()7%&$)(" 4&*'$" )-&"
()'70)7'&("12"*/+$1"*0+%("8."+$)&'*0)+$,"9+)-"*"3-.(+0*4"
/1%&4"12"*/+$1"*0+%5"21'"&=*/34&5" 4+,-)+$,"*44"?*'81$"
*)1/(5"1'")170-+$,"*$"*)1/")1"4+,-)")-&"81$%("9+)-")-&"
$&+,-81'+$,"*)1/(@"
!" >44" &4&0)'1$+0" %&;+0&(" *'&" &$041(&%" +$" *" 04&*'" 34*()+0"
8*445"'&3'&(&$)+$,"*$"*)1/@"
!"A)7%&$)("+$)&'*0)"9+)-")-&"(.()&/"BC+,7'&"D*E"&+)-&'"
)-'17,-")170-+$,")-&"*)1/("1'"8."(&3*'*)&"078&(")-*)"
'&3'&(&$)" *" 3*')+074*'" &4&/&$)" <" F+)'1,&$" B847&E5"
?*'81$"B84*0GE5"H=.,&$"B'&%E5"6.%'1,&$"B9-+)&E@
!"I$")-+("3'1)1).3&5")-&"*/+$1"*0+%"/14&074&"+("()*)+0"+$"
!"903()$(?)@'#7"'"(&$&0*()*+)&5")4$(30:7").A9&"'
!" >)/&4K(" >LLIFMJN" !
?-+3"9+)-+$"&*0-"*)1/
!" ?141'&%" OPQ(" ! ")1"
'&3'&(&$)" 81$%(" *$%"
*)1/(
!"R-1)1(&$(1'(
B5$&C9)6"0(3);9"?
D03-%")EF$@"?7''&$)"/1%&4S"T1$%("8&)9&&$"
*)1/("*'&"2+=&%
D03-%")EF:@"C7)7'&"/1%&4S"T1$%("
8&)9&&$"*)1/(")1"8&"/*%&"24&=+84&
L-&" +$21'/*)+1$" 1$" &*0-"
078&"'&/+$%("()7%&$)("12")-&"
8*(+0" 3-.(+0*4" 3'13&')+&(" 12"
&*0-"&4&/&$)"BC+,7'&"D8E@
>?
>?
F&=)"A)&3
!"#$%&' ()+,' L-&" )*$,+84&" */+$1" *0+%" /1%&4V" +$)&'*0)+$,"
9+)-" 078&(" W" F+)'1,&$" B847&E5" ?*'81$" B84*0GE5" H=.,&$"
B'&%E5"6.%'1,&$"B9-+)&E
Alanine Planning / brainstorming
bond rotations
(atomistic)Simplifying the problem: from atomistic
to coarse-graining?
Chakraborty, Tatar, Harrison, Quek. Foundations of Nanoscience, 2010
!"#$%&'()*%")+,-"),.)/%#0"/)&')1&,-,(&$#-).2'$3,'/))
2/&'()&'*"+#$34")*#'(&1-")&'*"+.#$"/!
"#$%&'(!)*(+#(,$#'-.!/0,$#(*!1('(#.!2'030!4(##&5$6!
1*0!7&$1(,80!&5!(6!&6'0#9(:0!$6!(!'(,80!5;#9(:0.!(;<%06'0=!>&'*!?*-5&:(8!%(6&?;8(@305A!B0!(#0!
&%?80%06@6<!&'!9$#!'0(:*&6<!'*0!!&%?$#'(6:0!$9!%$80:;8(#!5*(?05!$9!,&$8$<&:(8!06@@05!C5;:*!(5!
6;:80$@=05.!'DEF!%$80:;805.!0':AG!&6!,&$:*0%&:(8!9;6:@$65A!!
1*0!#050(#:*!&6305@<('05H!!
•  '*0!?0=(<$<&:(8!3(8;0!$9!?*-5&:(8!30#5;5!IJ=&%065&$6(8!#0?#0506'(@$65!!
•  '*0!&6'0#(:@$6!,0'>006!IJ=&%065&$6(8!(6=!?*-5&:(8!#0?#0506'(@$65!
•  =&K0#06:05!&6!5:(80!$9!#0?#0506'(@$65!
L50#5!?*-5&:(88-!&6'0#(:'!>&'*!%(6&?;8(@305!(6=!'*0!'(,80J'$?!5;#9(:0!LM!'$!:(##-!$;'!0N?8$#(@$65!$9!$#&06'(@$6.!5&%&8(#&'-.!5*(?0!#0:$<6&@$6.!(6=!
%$80:;8(#!,$6=(,&8&'-!>&'*&6!'*0!:$65'#(&6'5!$9!('$%&:!,&$:*0%&:(8!?#$:05505A!!!
1*0!#050(#:*!*-?$'*05&5H!'*0!&6'0<#(@$6!$9!5?(@(8J&%(<0#-.!'*('!&5!60:055(#-!'$!=00?8-!;6=0#5'(6=!
,&$:*0%&5'#-.!&5!%$#0!0K0:@308-!(::$%?8&5*0=!'*#$;<*!0%,$=&0=!&6'0#(:@$6A!
5%#*)#+")*%")6&7"+"'$"/8)
5%9)#+")*%"/")0#&+"6)*,("*%"+8))
:#')9,2)*"--).+,;)&'*2&3,'8)
<'6"+/*#'6&'()5,11-")=90,*%"/&/)
1*0!?0=(<$<&:(8!?#$,80%!&5!'$!0N'#(:'!5:&06@O:!:;#&$5&'-!>*&80!'0(:*&6<!*$>!6;:80$@=05!,$6=!
>&'*!0(:*!$'*0#!'*#$;<*!*-=#$<06J,$6=&6<!('!5?0:&O:!5&'05.!*$>!'*0!(6@:$=$65!&6!'DEF!,&6=!
'$!'*0!:$##05?$6=&6<!:$=$65.!*$>!'*0!>$,,80!*-?$'*05&5!>$#+!0':A!!
⇒
!			
		
	
	#
$
%
%


'%(
%
%
)
#
* 
% 
		 
	
			!
 	+ ,,)-*. ⇒

	



	
  /01 ⇒ 	
	  


	
2
	
#		
$
	% 	34	

	

$
	% #	34
	
		

,
 
	  


			


 

 	 


	#
$%
 )
#
* %
,		
	
	

  	
  	


	
	
 
  	 	 

	 	
 	 

		
	
5
$

	

	
	1
!
,
6
7
% 
 
'% (
%
%
,
			
		


	

,
'

 ,
,
%
 , 
 	
 	 

	 	
 		

  
 
	
 
	 
  	



	6	
	
	



	

	
 
()
8
		

 0
3 9:

 
 
	
	
(
5;
		*
!	
!

	

	+
,
9

; 
	  	

	
	
A vision: Dynamic physical models of
proteins and DNA that fold
Foundations of Nanoscience, 2010
AAAS Annual Meeting, 2011
Chakraborty,Tatar, Harrison, Quek. 2009-2011
! !
!  )*$,+84 +$)'2*0 )1 -43 ()7%$)( 4*'$ )-
()'70)7'(12*/+$1*0+%(8.+$)'*0)+$,9+)-*3-.(+0*4
/1%412*/+$1*0+%521'=*/345 4+,-)+$,*44?*'81$
*)1/(51')170-+$,*$*)1/)14+,-))-81$%(9+)-)-
$+,-81'+$,*)1/(@
! 44 40)'1$+0 %;+0( *' $041(% +$ * 04*' 34*()+0
8*445'3'($)+$,*$*)1/@
!A)7%$)(+$)'*0)9+)-)-(.()/BC+,7'D*E+)-'
)-'17,-)170-+$,)-*)1/(1'8.(3*'*)078()-*)
'3'($) * 3*')+074*' 4/$)  F+)'1,$ B847E5
?*'81$B84*0GE5H=.,$B'%E56.%'1,$B9-+)E@
!I$)-+(3'1)1).35)-*/+$1*0+%/14074+(()*)+0+$
)-($()-*))-81$%*$,4(*'2+=%BC+,7'J@*E@
! )/4K( LLIFMJN !
?-+39+)-+$*0-*)1/
! ?141'% OPQ( ! )1
'3'($) 81$%( *$%
*)1/(
!R-1)1($(1'(
B5$C9)60(3);9?
D03-%)EF$@?7''$)/1%4ST1$%(8)9$
*)1/(*'2+=%
D03-%)EF:@C7)7'/1%4ST1$%(
8)9$*)1/()18/*%24=+84
L- +$21'/*)+1$ 1$ *0-
078'/+$%(()7%$)(12)-
8*(+0 3-.(+0*4 3'13')+( 12
*0-4/$)BC+,7'D8E@
! I/34/$)+$, 24=+84
81$%BC+,7'J@8E
!L14))-81$%('1)*)
8*(% 1$ )- 21'0( )-
*)1/(24*'17$%)-/@
! 619 )1 '3'($) *$%
+/34/$) )- $1)+1$ 12
*))'*0)+1$*$%'374(+1$U
D--%)B*%8
!#$%'()*)'Q(+,$12*0-078
!#$%' ()+,' L- )*$,+84 */+$1 *0+% /1%4V +$)'*0)+$,
9+)- 078( W F+)'1,$ B847E5 ?*'81$ B84*0GE5 H=.,$
B'%E56.%'1,$B9-+)E
!L187+4%34*)21'/(5+231((+845)1+/+)*))-/14074*'(42*((/84.123'1)+$(*(($!#$!$%@
!L1$-*$0*$%*7,/$))-7$%'()*$%+$,128+141,.*))-27$%*/$)*44;48.)-(0-1140-+4%'$@
;70'$)G*$79
! L1 -*; *0- *)1/ +$047% * 0-+3 21'
410*401/37)*)+1$*$%+$)'*0)3-.(+0*44.
9+)-+)($+,-81'(@
! L1 -*; *0- 0-+3 ()1' +$21'/*)+1$
*817) )- +//%+*) $+,-81'( B+@@
4/$)).3(5*$%)-81$%).3(E@
! L1 -*; )- (.()/ 0*4074*) )- )1)*4
21'0 1$ * 3*')+074*' *)1/ 8*(% 1$ )-
*81;+$21'/*)+1$V)1/*(7')-220)(
12*0-*)1/1$*0-1)-'@
H:I/09
! #( 078( )1 01$()'70) )*$,+84
X7'+(*817))-/1%4@
$ P=*/34S YZ-+0- ?*'81$ *)1/(
21'/81$%(9+)-H=.,$*)1/(U[
)4$(30:7)J-%A)
.A9'
*).-##*%)K$%(0(3
L- (3*0+*4 1'+$)*)+1$ 12 17' 3-.(+0*4 /1%4
/+,-) -43 )- Y3*'*444[ $*)7' 12 )-
01/37)*)+1$+$;14;%@
!
()'70)7'(12*/+$1*0+%(8.+$)'*0)+$,9+)-*3-.(+0*4
/1%412*/+$1*0+%521'=*/345 4+,-)+$,*44?*'81$
*)1/(51')170-+$,*$*)1/)14+,-))-81$%(9+)-)-
$+,-81'+$,*)1/(@
! 44 40)'1$+0 %;+0( *' $041(% +$ * 04*' 34*()+0
8*445'3'($)+$,*$*)1/@
!A)7%$)(+$)'*0)9+)-)-(.()/BC+,7'D*E+)-'
)-'17,-)170-+$,)-*)1/(1'8.(3*'*)078()-*)
'3'($) * 3*')+074*' 4/$)  F+)'1,$ B847E5
?*'81$B84*0GE5H=.,$B'%E56.%'1,$B9-+)E@
!I$)-+(3'1)1).35)-*/+$1*0+%/14074+(()*)+0+$
)-($()-*))-81$%*$,4(*'2+=%BC+,7'J@*E@
! )/4K( LLIFMJN !
?-+39+)-+$*0-*)1/
! ?141'% OPQ( ! )1
'3'($) 81$%( *$%
*)1/(
!R-1)1($(1'(
L- +$21'/*)+1$ 1$ *0-
078'/+$%(()7%$)(12)-
8*(+0 3-.(+0*4 3'13')+( 12
*0-4/$)BC+,7'D8E@
! I/34/$)+$, 24=+84
81$%BC+,7'J@8E
!L14))-81$%('1)*)
8*(% 1$ )- 21'0( )-
*)1/(24*'17$%)-/@
! 619 )1 '3'($) *$%
+/34/$) )- $1)+1$ 12
*))'*0)+1$*$%'374(+1$U
D--%)B*%8
+,$12*0-078
4*)21'/(5+231((+845)1+/+)*))-/14074*'(42*((/84.123'1)+$(*(($!#$!$%@
0*$%*7,/$))-7$%'()*$%+$,128+141,.*))-27$%*/$)*44;48.)-(0-1140-+4%'$@
;70'$)G*$79
*0- *)1/ +$047% * 0-+3 21'
)*)+1$*$%+$)'*0)3-.(+0*44.
-81'(@
*0- 0-+3 ()1' +$21'/*)+1$
+//%+*) $+,-81'( B+@@
(5*$%)-81$%).3(E@
)- (.()/ 0*4074*) )- )1)*4
3*')+074*' *)1/ 8*(% 1$ )-
/*)+1$V)1/*(7')-220)(
/1$*0-1)-'@
9
! #( 078( )1 01$()'70) )*$,+84
X7'+(*817))-/1%4@
$ P=*/34S YZ-+0- ?*'81$ *)1/(
21'/81$%(9+)-H=.,$*)1/(U[
)4$(30:7)J-%A)
.A9'
*).-##*%)K$%(0(3
L- (3*0+*4 1'+$)*)+1$ 12 17' 3-.(+0*4 /1%4
/+,-) -43 )- Y3*'*444[ $*)7' 12 )-
01/37)*)+1$+$;14;%@
Lessons learned for these studies
• Foldable macromolecules: Can they be built at all and folded
with accuracy?
• How can models interact with computer without
cumbersome designs, but retaining accuracy?
• There exists no computational/CAD platform for physical
models to biocomputation platforms
6 Color-coded nucleotides
Coarse-graining
Folding with accuracy (alpha-
helix and beta-sheet)
7Peppytides
1 of 31

Recommended

Anthology by Helena Lunt by
Anthology by Helena LuntAnthology by Helena Lunt
Anthology by Helena LunthelenaL18
287 views7 slides
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor... by
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...promitac
769 views43 slides
ChatGPT and the Future of Work - Clark Boyd by
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
23.4K views69 slides
Getting into the tech field. what next by
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
5.6K views22 slides
Google's Just Not That Into You: Understanding Core Updates & Search Intent by
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
6.3K views99 slides
How to have difficult conversations by
How to have difficult conversations How to have difficult conversations
How to have difficult conversations Rajiv Jayarajah, MAppComm, ACC
4.9K views19 slides

More Related Content

Recently uploaded

Conventional and non-conventional methods for improvement of cucurbits.pptx by
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptxgandhi976
19 views35 slides
Artificial Intelligence Helps in Drug Designing and Discovery.pptx by
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptxabhinashsahoo2001
126 views22 slides
DATABASE MANAGEMENT SYSTEM by
DATABASE MANAGEMENT SYSTEMDATABASE MANAGEMENT SYSTEM
DATABASE MANAGEMENT SYSTEMDr. GOPINATH D
7 views50 slides
POSTER IV LAWCN_ROVER_IUE.pdf by
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfSOCIEDAD JULIO GARAVITO
9 views1 slide
himalay baruah acid fast staining.pptx by
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptxHimalayBaruah
7 views16 slides
별헤는 사람들 2023년 12월호 전명원 교수 자료 by
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료sciencepeople
41 views30 slides

Recently uploaded(20)

Conventional and non-conventional methods for improvement of cucurbits.pptx by gandhi976
Conventional and non-conventional methods for improvement of cucurbits.pptxConventional and non-conventional methods for improvement of cucurbits.pptx
Conventional and non-conventional methods for improvement of cucurbits.pptx
gandhi97619 views
Artificial Intelligence Helps in Drug Designing and Discovery.pptx by abhinashsahoo2001
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptx
abhinashsahoo2001126 views
himalay baruah acid fast staining.pptx by HimalayBaruah
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptx
HimalayBaruah7 views
별헤는 사람들 2023년 12월호 전명원 교수 자료 by sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople41 views
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 views
Experimental animal Guinea pigs.pptx by Mansee Arya
Experimental animal Guinea pigs.pptxExperimental animal Guinea pigs.pptx
Experimental animal Guinea pigs.pptx
Mansee Arya17 views
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf by KerryNuez1
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
KerryNuez125 views
Open Access Publishing in Astrophysics by Peter Coles
Open Access Publishing in AstrophysicsOpen Access Publishing in Astrophysics
Open Access Publishing in Astrophysics
Peter Coles906 views
RemeOs science and clinical evidence by PetrusViitanen1
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidence
PetrusViitanen137 views
CSF -SHEEBA.D presentation.pptx by SheebaD7
CSF -SHEEBA.D presentation.pptxCSF -SHEEBA.D presentation.pptx
CSF -SHEEBA.D presentation.pptx
SheebaD714 views
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... by InsideScientific
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
InsideScientific58 views
"How can I develop my learning path in bioinformatics? by Bioinformy
"How can I develop my learning path in bioinformatics?"How can I develop my learning path in bioinformatics?
"How can I develop my learning path in bioinformatics?
Bioinformy24 views
Pollination By Nagapradheesh.M.pptx by MNAGAPRADHEESH
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptx
MNAGAPRADHEESH16 views

Featured

The six step guide to practical project management by
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
36.6K views27 slides
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright... by
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
12.6K views21 slides
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present... by
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
55.5K views138 slides
12 Ways to Increase Your Influence at Work by
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
401.7K views64 slides
ChatGPT webinar slides by
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slidesAlireza Esmikhani
30.3K views36 slides

Featured(20)

The six step guide to practical project management by MindGenius
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
MindGenius36.6K views
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright... by RachelPearson36
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson3612.6K views
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present... by Applitools
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools55.5K views
12 Ways to Increase Your Influence at Work by GetSmarter
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter401.7K views
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G... by DevGAMM Conference
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
DevGAMM Conference3.6K views
Barbie - Brand Strategy Presentation by Erica Santiago
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
Erica Santiago25.1K views
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well by Saba Software
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Saba Software25.2K views
Introduction to C Programming Language by Simplilearn
Introduction to C Programming LanguageIntroduction to C Programming Language
Introduction to C Programming Language
Simplilearn8.4K views
The Pixar Way: 37 Quotes on Developing and Maintaining a Creative Company (fr... by Palo Alto Software
The Pixar Way: 37 Quotes on Developing and Maintaining a Creative Company (fr...The Pixar Way: 37 Quotes on Developing and Maintaining a Creative Company (fr...
The Pixar Way: 37 Quotes on Developing and Maintaining a Creative Company (fr...
Palo Alto Software88.4K views
9 Tips for a Work-free Vacation by Weekdone.com
9 Tips for a Work-free Vacation9 Tips for a Work-free Vacation
9 Tips for a Work-free Vacation
Weekdone.com7.2K views
How to Map Your Future by SlideShop.com
How to Map Your FutureHow to Map Your Future
How to Map Your Future
SlideShop.com275.1K views
Beyond Pride: Making Digital Marketing & SEO Authentically LGBTQ+ Inclusive -... by AccuraCast
Beyond Pride: Making Digital Marketing & SEO Authentically LGBTQ+ Inclusive -...Beyond Pride: Making Digital Marketing & SEO Authentically LGBTQ+ Inclusive -...
Beyond Pride: Making Digital Marketing & SEO Authentically LGBTQ+ Inclusive -...
AccuraCast3.4K views
Exploring ChatGPT for Effective Teaching and Learning.pptx by Stan Skrabut, Ed.D.
Exploring ChatGPT for Effective Teaching and Learning.pptxExploring ChatGPT for Effective Teaching and Learning.pptx
Exploring ChatGPT for Effective Teaching and Learning.pptx
Stan Skrabut, Ed.D.57.7K views
How to train your robot (with Deep Reinforcement Learning) by Lucas García, PhD
How to train your robot (with Deep Reinforcement Learning)How to train your robot (with Deep Reinforcement Learning)
How to train your robot (with Deep Reinforcement Learning)
Lucas García, PhD42.5K views
4 Strategies to Renew Your Career Passion by Daniel Goleman
4 Strategies to Renew Your Career Passion4 Strategies to Renew Your Career Passion
4 Strategies to Renew Your Career Passion
Daniel Goleman122K views
The Student's Guide to LinkedIn by LinkedIn
The Student's Guide to LinkedInThe Student's Guide to LinkedIn
The Student's Guide to LinkedIn
LinkedIn87.9K views

AAAS feb15 2015 Physical Biomodeling and Foldable, Coarse-Grained Physical Model of Polypeptide Chain

  • 1. Physical Biomodeling and Foldable, Coarse-Grained Physical Model of Polypeptide Chain Promita Chakraborty Feb 15, 2015 AAAS Annual Meeting 2015, San Jose Symposium: Emerging Trends inVisualizing Physical Models and Rapid Prototyping for Biological Systems 1
  • 2. 2 A vision: Dynamic physical models of macromolecules that fold and convey information
  • 3. BioTable Computer interface and physical models • BioTable is a computer monitor • An interactive unit for translation • Idea was to detect foldable models and molecule-molecule interaction with computers + head-mount cameras 3
  • 4. Dynamic backbone, amino acids and proteins 4 !"#$%&'()*'+"',#"&-.(/0,#"'*(1'&'".(2&030(4'""%5#6.(7"'68%5(9:0+ !"#$%&'"(&)*+),*'#-&"%)./0"(/"1)20%30(0$)4"/51)67$/89:-%31)20%30(0$1);.< !"#$%&'()*"$+#,-'./01+0!23 !"#$%&'()*$%+$,")-&"%.$*/+0("12"3'1)&+$"214%+$,5"'*)-&'")-*$"1$4.")-&"2+$*4"214%&%"()*)& !"613+$,"21'"*"%&&3&'"7$%&'()*$%+$,"12"+$)&'*0)+1$"8&)9&&$"*/+$1"*0+%( !":1)+;*)+$,"/+%%4&<(0-114"0-+4%'&$")1"4&*'$"27$%*/&$)*4"8+141,."!"#$%&'()*$%+$,"-19")-&.",'*(3"01/34&=")-17,-)( =*&0>$&0*( !" >" )*$,+84&" +$)&'2*0&" )1" -&43" ()7%&$)(" 4&*'$" )-&" ()'70)7'&("12"*/+$1"*0+%("8."+$)&'*0)+$,"9+)-"*"3-.(+0*4" /1%&4"12"*/+$1"*0+%5"21'"&=*/34&5" 4+,-)+$,"*44"?*'81$" *)1/(5"1'")170-+$,"*$"*)1/")1"4+,-)")-&"81$%("9+)-")-&" $&+,-81'+$,"*)1/(@" !" >44" &4&0)'1$+0" %&;+0&(" *'&" &$041(&%" +$" *" 04&*'" 34*()+0" 8*445"'&3'&(&$)+$,"*$"*)1/@" !"A)7%&$)("+$)&'*0)"9+)-")-&"(.()&/"BC+,7'&"D*E"&+)-&'" )-'17,-")170-+$,")-&"*)1/("1'"8."(&3*'*)&"078&(")-*)" '&3'&(&$)" *" 3*')+074*'" &4&/&$)" <" F+)'1,&$" B847&E5" ?*'81$"B84*0GE5"H=.,&$"B'&%E5"6.%'1,&$"B9-+)&E@ !"I$")-+("3'1)1).3&5")-&"*/+$1"*0+%"/14&074&"+("()*)+0"+$" !"903()$(?)@'#7"'"(&$&0*()*+)&5")4$(30:7").A9&"' !" >)/&4K(" >LLIFMJN" ! ?-+3"9+)-+$"&*0-"*)1/ !" ?141'&%" OPQ(" ! ")1" '&3'&(&$)" 81$%(" *$%" *)1/( !"R-1)1(&$(1'( B5$&C9)6"0(3);9"? D03-%")EF$@"?7''&$)"/1%&4S"T1$%("8&)9&&$" *)1/("*'&"2+=&% D03-%")EF:@"C7)7'&"/1%&4S"T1$%(" 8&)9&&$"*)1/(")1"8&"/*%&"24&=+84& L-&" +$21'/*)+1$" 1$" &*0-" 078&"'&/+$%("()7%&$)("12")-&" 8*(+0" 3-.(+0*4" 3'13&')+&(" 12" &*0-"&4&/&$)"BC+,7'&"D8E@ >? >? F&=)"A)&3 !"#$%&' ()+,' L-&" )*$,+84&" */+$1" *0+%" /1%&4V" +$)&'*0)+$," 9+)-" 078&(" W" F+)'1,&$" B847&E5" ?*'81$" B84*0GE5" H=.,&$" B'&%E5"6.%'1,&$"B9-+)&E Alanine Planning / brainstorming bond rotations (atomistic)Simplifying the problem: from atomistic to coarse-graining? Chakraborty, Tatar, Harrison, Quek. Foundations of Nanoscience, 2010
  • 5. !"#$%&'()*%")+,-"),.)/%#0"/)&')1&,-,(&$#-).2'$3,'/)) 2/&'()&'*"+#$34")*#'(&1-")&'*"+.#$"/! "#$%&'(!)*(+#(,$#'-.!/0,$#(*!1('(#.!2'030!4(##&5$6! 1*0!7&$1(,80!&5!(6!&6'0#9(:0!$6!(!'(,80!5;#9(:0.!(;<%06'0=!>&'*!?*-5&:(8!%(6&?;8(@305A!B0!(#0! &%?80%06@6<!&'!9$#!'0(:*&6<!'*0!!&%?$#'(6:0!$9!%$80:;8(#!5*(?05!$9!,&$8$<&:(8!06@@05!C5;:*!(5! 6;:80$@=05.!'DEF!%$80:;805.!0':AG!&6!,&$:*0%&:(8!9;6:@$65A!! 1*0!#050(#:*!&6305@<('05H!! •  '*0!?0=(<$<&:(8!3(8;0!$9!?*-5&:(8!30#5;5!IJ=&%065&$6(8!#0?#0506'(@$65!! •  '*0!&6'0#(:@$6!,0'>006!IJ=&%065&$6(8!(6=!?*-5&:(8!#0?#0506'(@$65! •  =&K0#06:05!&6!5:(80!$9!#0?#0506'(@$65! L50#5!?*-5&:(88-!&6'0#(:'!>&'*!%(6&?;8(@305!(6=!'*0!'(,80J'$?!5;#9(:0!LM!'$!:(##-!$;'!0N?8$#(@$65!$9!$#&06'(@$6.!5&%&8(#&'-.!5*(?0!#0:$<6&@$6.!(6=! %$80:;8(#!,$6=(,&8&'-!>&'*&6!'*0!:$65'#(&6'5!$9!('$%&:!,&$:*0%&:(8!?#$:05505A!!! 1*0!#050(#:*!*-?$'*05&5H!'*0!&6'0<#(@$6!$9!5?(@(8J&%(<0#-.!'*('!&5!60:055(#-!'$!=00?8-!;6=0#5'(6=! ,&$:*0%&5'#-.!&5!%$#0!0K0:@308-!(::$%?8&5*0=!'*#$;<*!0%,$=&0=!&6'0#(:@$6A! 5%#*)#+")*%")6&7"+"'$"/8) 5%9)#+")*%"/")0#&+"6)*,("*%"+8)) :#')9,2)*"--).+,;)&'*2&3,'8) <'6"+/*#'6&'()5,11-")=90,*%"/&/) 1*0!?0=(<$<&:(8!?#$,80%!&5!'$!0N'#(:'!5:&06@O:!:;#&$5&'-!>*&80!'0(:*&6<!*$>!6;:80$@=05!,$6=! >&'*!0(:*!$'*0#!'*#$;<*!*-=#$<06J,$6=&6<!('!5?0:&O:!5&'05.!*$>!'*0!(6@:$=$65!&6!'DEF!,&6=! '$!'*0!:$##05?$6=&6<!:$=$65.!*$>!'*0!>$,,80!*-?$'*05&5!>$#+!0':A!!
  • 6.
  • 7. ! #
  • 8. $ %
  • 10. %
  • 11. % )
  • 12. #
  • 13. * % ! + ,,)-*. ⇒ /01 ⇒ 2 # $ % 34 $ % # 34 , #
  • 14. $% )
  • 15. #
  • 16. * % , 5 $ 1
  • 17. !
  • 18. ,
  • 19. 6
  • 20. 7
  • 21. % '% (
  • 22. %
  • 23. % , ,
  • 24. ' ,
  • 25. ,
  • 26. % , 6 ()
  • 27. 8 0 3 9: (
  • 29. 9 ; A vision: Dynamic physical models of proteins and DNA that fold Foundations of Nanoscience, 2010 AAAS Annual Meeting, 2011 Chakraborty,Tatar, Harrison, Quek. 2009-2011 ! ! ! )*$,+84 +$)'2*0 )1 -43 ()7%$)( 4*'$ )- ()'70)7'(12*/+$1*0+%(8.+$)'*0)+$,9+)-*3-.(+0*4 /1%412*/+$1*0+%521'=*/345 4+,-)+$,*44?*'81$ *)1/(51')170-+$,*$*)1/)14+,-))-81$%(9+)-)- $+,-81'+$,*)1/(@ ! 44 40)'1$+0 %;+0( *' $041(% +$ * 04*' 34*()+0 8*445'3'($)+$,*$*)1/@ !A)7%$)(+$)'*0)9+)-)-(.()/BC+,7'D*E+)-' )-'17,-)170-+$,)-*)1/(1'8.(3*'*)078()-*) '3'($) * 3*')+074*' 4/$) F+)'1,$ B847E5 ?*'81$B84*0GE5H=.,$B'%E56.%'1,$B9-+)E@ !I$)-+(3'1)1).35)-*/+$1*0+%/14074+(()*)+0+$ )-($()-*))-81$%*$,4(*'2+=%BC+,7'J@*E@ ! )/4K( LLIFMJN ! ?-+39+)-+$*0-*)1/ ! ?141'% OPQ( ! )1 '3'($) 81$%( *$% *)1/( !R-1)1($(1'( B5$C9)60(3);9? D03-%)EF$@?7''$)/1%4ST1$%(8)9$ *)1/(*'2+=% D03-%)EF:@C7)7'/1%4ST1$%( 8)9$*)1/()18/*%24=+84 L- +$21'/*)+1$ 1$ *0- 078'/+$%(()7%$)(12)- 8*(+0 3-.(+0*4 3'13')+( 12 *0-4/$)BC+,7'D8E@ ! I/34/$)+$, 24=+84 81$%BC+,7'J@8E !L14))-81$%('1)*) 8*(% 1$ )- 21'0( )- *)1/(24*'17$%)-/@ ! 619 )1 '3'($) *$% +/34/$) )- $1)+1$ 12 *))'*0)+1$*$%'374(+1$U D--%)B*%8 !#$%'()*)'Q(+,$12*0-078 !#$%' ()+,' L- )*$,+84 */+$1 *0+% /1%4V +$)'*0)+$, 9+)- 078( W F+)'1,$ B847E5 ?*'81$ B84*0GE5 H=.,$ B'%E56.%'1,$B9-+)E !L187+4%34*)21'/(5+231((+845)1+/+)*))-/14074*'(42*((/84.123'1)+$(*(($!#$!$%@ !L1$-*$0*$%*7,/$))-7$%'()*$%+$,128+141,.*))-27$%*/$)*44;48.)-(0-1140-+4%'$@ ;70'$)G*$79 ! L1 -*; *0- *)1/ +$047% * 0-+3 21' 410*401/37)*)+1$*$%+$)'*0)3-.(+0*44. 9+)-+)($+,-81'(@ ! L1 -*; *0- 0-+3 ()1' +$21'/*)+1$ *817) )- +//%+*) $+,-81'( B+@@ 4/$)).3(5*$%)-81$%).3(E@ ! L1 -*; )- (.()/ 0*4074*) )- )1)*4 21'0 1$ * 3*')+074*' *)1/ 8*(% 1$ )- *81;+$21'/*)+1$V)1/*(7')-220)( 12*0-*)1/1$*0-1)-'@ H:I/09 ! #( 078( )1 01$()'70) )*$,+84 X7'+(*817))-/1%4@ $ P=*/34S YZ-+0- ?*'81$ *)1/( 21'/81$%(9+)-H=.,$*)1/(U[ )4$(30:7)J-%A) .A9' *).-##*%)K$%(0(3 L- (3*0+*4 1'+$)*)+1$ 12 17' 3-.(+0*4 /1%4 /+,-) -43 )- Y3*'*444[ $*)7' 12 )- 01/37)*)+1$+$;14;%@ ! ()'70)7'(12*/+$1*0+%(8.+$)'*0)+$,9+)-*3-.(+0*4 /1%412*/+$1*0+%521'=*/345 4+,-)+$,*44?*'81$ *)1/(51')170-+$,*$*)1/)14+,-))-81$%(9+)-)- $+,-81'+$,*)1/(@ ! 44 40)'1$+0 %;+0( *' $041(% +$ * 04*' 34*()+0 8*445'3'($)+$,*$*)1/@ !A)7%$)(+$)'*0)9+)-)-(.()/BC+,7'D*E+)-' )-'17,-)170-+$,)-*)1/(1'8.(3*'*)078()-*) '3'($) * 3*')+074*' 4/$) F+)'1,$ B847E5 ?*'81$B84*0GE5H=.,$B'%E56.%'1,$B9-+)E@ !I$)-+(3'1)1).35)-*/+$1*0+%/14074+(()*)+0+$ )-($()-*))-81$%*$,4(*'2+=%BC+,7'J@*E@ ! )/4K( LLIFMJN ! ?-+39+)-+$*0-*)1/ ! ?141'% OPQ( ! )1 '3'($) 81$%( *$% *)1/( !R-1)1($(1'( L- +$21'/*)+1$ 1$ *0- 078'/+$%(()7%$)(12)- 8*(+0 3-.(+0*4 3'13')+( 12 *0-4/$)BC+,7'D8E@ ! I/34/$)+$, 24=+84 81$%BC+,7'J@8E !L14))-81$%('1)*) 8*(% 1$ )- 21'0( )- *)1/(24*'17$%)-/@ ! 619 )1 '3'($) *$% +/34/$) )- $1)+1$ 12 *))'*0)+1$*$%'374(+1$U D--%)B*%8 +,$12*0-078 4*)21'/(5+231((+845)1+/+)*))-/14074*'(42*((/84.123'1)+$(*(($!#$!$%@ 0*$%*7,/$))-7$%'()*$%+$,128+141,.*))-27$%*/$)*44;48.)-(0-1140-+4%'$@ ;70'$)G*$79 *0- *)1/ +$047% * 0-+3 21' )*)+1$*$%+$)'*0)3-.(+0*44. -81'(@ *0- 0-+3 ()1' +$21'/*)+1$ +//%+*) $+,-81'( B+@@ (5*$%)-81$%).3(E@ )- (.()/ 0*4074*) )- )1)*4 3*')+074*' *)1/ 8*(% 1$ )- /*)+1$V)1/*(7')-220)( /1$*0-1)-'@ 9 ! #( 078( )1 01$()'70) )*$,+84 X7'+(*817))-/1%4@ $ P=*/34S YZ-+0- ?*'81$ *)1/( 21'/81$%(9+)-H=.,$*)1/(U[ )4$(30:7)J-%A) .A9' *).-##*%)K$%(0(3 L- (3*0+*4 1'+$)*)+1$ 12 17' 3-.(+0*4 /1%4 /+,-) -43 )- Y3*'*444[ $*)7' 12 )- 01/37)*)+1$+$;14;%@
  • 30. Lessons learned for these studies • Foldable macromolecules: Can they be built at all and folded with accuracy? • How can models interact with computer without cumbersome designs, but retaining accuracy? • There exists no computational/CAD platform for physical models to biocomputation platforms 6 Color-coded nucleotides Coarse-graining
  • 31. Folding with accuracy (alpha- helix and beta-sheet) 7Peppytides
  • 32. Folding into secondary and tertiary str pid: 1FSD 28 amino ββα motifβ turns
  • 33. Beta turns 9 Type I Type I' Type II Type II' ααα - Fish Osteocalcin pid: 1VZM, chain A 45 amino acids N-term C-term
  • 34. The future of physical biomodeling for protein structures 10
  • 35. -62° ψ ϕ -42° -118° ψ ϕ138° PyMol Configuration change of ψ and ϕ: α-helix→β-sheet α-helix β-sheet ψ ϕ A flexible biased backbone Model/ CAD AA1 AA2 AA3 AA4 ϕ ψ
  • 37. Ramachandran plot: a comparison PDB data Chakraborty and Zuckermann, PNAS,Vol. 110, No. 33, 2013. Peppytides at 0.7 RVDW with rotational barrier constraints ϕ ψ
  • 38. Atom-radii = 0.6 RVDW Atom-radii = 0.7 RVDW Atom-radii = 0.8 RVDW Measured at 5˚ intervals Ramachandran plot generated using approx. 80,000 structure files from Protein Data bank 14
  • 39. O H N 15 A scaled model: Peppytide At Lawrence Hall of Science, UC Berkeley 93,000,000 times magnified
  • 40. 18.4Å Measuring folding accuracy 6.75(~18.362Å) alphaC1 to alphaC13 pid: 2ZTA chain B {AA-16} KNYHLENEVARLKKL 16 Hydrogen bond Measuring N1 to N5 13.4 Å 12.9 Å 4.853” ± 0.044” (~13.202 ± 0.121Å) 4.853” ± 0.103” (~13.202 ± 0.281Å) pid: 202J Representing with magnets • acceptor/donor as N/S pole O–N distance is typically 3.00 ± 0.12 Å, from an α-helix crystal structure In the Peppytide model, the O–N distance is 1.17 ̋ ± 0.04 ̋ (equivalent to 3.18 ± 0.11 Å) Alpha helix Parallel beta sheet
  • 41. Peppytides 2 17 • Interchangeable side chains • Can make different sequences of amino acids on-the-fly
  • 42. PeppyChains 18 PeppyChains (with Ala-Val-Gly sequence) • 3D-printed as a single unit • No assembly required • Without bias magnets • next step! • Interchangeable side chains
  • 43. Physical Biomodeling: a new field of exploration 19 Chakraborty, PhD Dissertation, 2014. Example: BioTable Example: Peppytide Example: MD in grid* *Chakraborty, Jha, Katz, Phil.Trans. R. Soc A, 2009 @CCT, LSU
  • 44. Physical Biomodeling: a new field of exploration • Precision biomodels as scientific tool for computational modeling 20 Chakraborty, PhD Dissertation, 2014.
  • 45. Physical Biomodeling and CAD 21 • Enabling CAD- Bioplatform-3DPrint • Design→ 3dPrint → Fold paradigm Thanks:Autodesk funding and collaborationChakraborty, PhD Dissertation, 2014.
  • 46. Possibilities 22 • a different approach to study the same problem • protein-protein interaction • CAD-cum-biocomputation platform does not exist yet • Study of misfolded proteins and aggregates • Exploring other types of polymers Chakraborty, PhD Dissertation, 2014. • Enabling CAD-Bioplatform-3DPrint • Design→ 3dPrint → Fold paradigm • A viable input device for molecular chains • A viable output device for molecular chains • Self-folding
  • 47. Envisioning the future of dynamic macromolecules Imagine a world! 23
  • 48. 40! How to make them? Open source! Make Magazine -- Projects! Peppytides
  • 49. Acknowledgments and Contacts • QuezyLab • Collaboration with UCSF Science Health Education Partnership • Collaboration with Foothill College, Los Altos 25 • Shantenu Jha, Daniel Katz (CCT, LSU, now at Rutgers U. and Argonne/U. Chicago respectively) • Deborah Tatar, Steve Harrison, Francis Quek (VT) • Ronald Zuckermann (LBNL), DoE (Office of Basic Energy Sciences), Defense Threat Reduction Agency (DTRA) • Alexey Onufriev (VT), Joseph DeRisi (UCSF) • Molecular Foundry, Lawrence Berkeley National Lab • Virginia Tech, Dept. of Computer Sc. • Lawrence Hall of Science Museum • Industry Collaboration and support by Autodesk Inc. www.quezylab.com promita@quezylab.com
  • 50. Peppytide videoshoot Joe DeRisi’s lab, UCSF Berkeley Lab booth, Berkeley Solano Fest, 2013 Bay Area 2014 Prof. Robert Stroud testing for beta-turns, UCSF, Dec 2013 Congress Offices, Capitol Hill,Washington DC Jun 2014 LBL team with Congressman Jerry McNerney Nanobio Summer Camp 2014, Foothill College
  • 52. Existing models 28 CPK models Dreiding stereomodel Ball-and-stick Center for BioMolecular Modeling, Milwaukee School of Engineering http://www. 3dmoleculardesigns.com/ Scripps Physical Model Service, Scripps Research Institute http://models.scripps.edu/ beta sheet alpha helix DNA double helix
  • 53. Trade off: Van der Waals radius Vs. Covalent radius Benzene 0.1 VDWr 0.35 VDWr 0.5 VDWr 0.65 VDWr 0.7 VDWr 0.8 VDWr 0.9 VDWr 1.0 VDWr Version # *VDWr Ver1 0.5 / 0.35 Ver2.1 0.8 Ver2.2 0.7 Bondi Radius 29
  • 55. • beta beta alpha motif • pid: 1FSD 28 amino acids identities (36 to 39 percent) and P values scores that no sequence information from any protein motif was used in our sequence scoring function. In order to examine the robustness of the computed sequence, we used the sequence of FSD-1 as the starting point of a Monte Carlo simulated annealing run. The Monte Carlo search revealed high scoring, suboptimal se- quences in the neighborhood of the optimal solution (4). The energy spread from the ground-state solution to the 1000th most stable sequence is about 5 kcal/mol, an indi- cation that the density of states is high. The amino acids comprising the core of the mol- ecule, with the exception of position 7, are essentially invariant (Fig. 1). Almost all of the sequence variation occurs at surface po- sitions, and typically involves conservative changes. Asn14 , which is predicted to form a stabilizing hydrogen bond to the helix back- D-1 structures. (A) Stereoview of the second zinc ues and zinc binding site. (B) Stereoview of the 1. For clarity, only side chains from residues 3, 5, 8, re created with MOLMOL (38). traints, structural statistics, and atomic root-mean- annealing structures, SA is the average structure onAugust15,2012www.sciencemag.orgdedfrom binding His positions of Zif268, are more than 80 percent buried, and the Ala at position 5 is 100 percent buried but the Lys at position 8 is more than 60 percent ex- posed to solvent (Fig. 2). The other bound- ary positions demonstrate the steric con- straints on buried residues by packing similar side chains in an arrangement similar to that of Zif268 (Fig. 2). The calculated optimal configuration for core and boundary residues buries 1150 Å2 of nonpolar surface area. On the helix surface, the algorithm places Asn14 with a hydrogen bond between its side-chain carbonyl oxygen and the back- bone amide proton of residue 16. The eight charged residues on the helix form three pairs of hydrogen bonds, although in our coiled-coil designs, helical surface hydrogen the overall helix propensity of the sequenc (5). Positions 4 and 11 on the exposed she surface were selected by the program to b Thr, one of the best -sheet forming res dues (21). Alignment of the sequences for FSD and Zif268 (Fig. 1) indicates that only 6 the 28 residues (21 percent) are identic and only 11 (39 percent) are similar. Four the identities are in the buried cluster, whic is consistent with the expectation that bu ied residues are more conserved than so vent-exposed residues for a given motif (22 A BLAST (23) search of the FSD-1 s quence against the nonredundant prote sequence database of the National Cent for Biotechnology Information did not r veal any zinc finger protein sequences. Fu N-term C-term Dahiyat, B.I. and S.L. Mayo, De Novo Protein Design: Fully Automated Sequence Selection. Science, 1997. 278(82)31 FSD-1 denovo structure