Potential of eco-composites in the elaboration and design of urban furniture Joël LEVEQUE AtoutVeille « Human Cities - Sus...
Preamble <ul><li>About AtoutVeille </li></ul><ul><li>French private company which provides technology-watch services in th...
<ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><l...
1 – Introduction <ul><li>Context </li></ul><ul><li>Need to reduce CO 2  emissions for reducing the greenhouse effect </li>...
1 – Introduction <ul><li>Objectives </li></ul><ul><li>To present the potential of eco-composites </li></ul><ul><li>To info...
<ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><l...
2 – From materials … to eco-materials <ul><li>From materials …   (cf. A. Fuad-Luke) </li></ul><ul><li>Biosphere materials ...
2 – From materials … to eco-materials <ul><li>…  to eco-materials  (cf. A. Fuad-Luke) </li></ul><ul><li>Eco-materials : ha...
<ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><l...
3 – Eco-composites <ul><li>Eco-composites </li></ul><ul><li>Recycled plastics </li></ul><ul><ul><li>Produced from municipa...
3 – Eco-composites <ul><li>Advantages </li></ul><ul><ul><li>Recyclable </li></ul></ul><ul><ul><li>Rot-proof </li></ul></ul...
3 – Eco-composites <ul><li>Wood-polymer composites </li></ul><ul><li>Advantages </li></ul><ul><ul><li>Replacement for trop...
3 – Eco-composites <ul><li>Drawbacks </li></ul><ul><ul><li>Not as « natural » than wood (environmentalist suspicion of com...
3 – Eco-composites <ul><li>Advantages </li></ul><ul><ul><li>Excellent specific modulus </li></ul></ul><ul><ul><li>Biodegra...
3 – Eco-composites <ul><li>Environmental advantages & drawbacks of natural fibre composites </li></ul><ul><li>Advantages <...
<ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><l...
4 – Applications in the field of urban furniture Products made with recycled plastic Walk ways (© JFC Plastics) Bench (© B...
4 – Applications in the field of urban furniture Products made with recycled plastic « Chatbox » (© Baccarne Design) Garde...
4 – Applications in the field of urban furniture Products made with recycled plastic Planter (© Ecoplastic) Play area (© P...
4 – Applications in the field of urban furniture Products made with wood-polymer composites Decking (© Vannplastic) Barrie...
4 – Applications in the field of urban furniture Products made with wood-polymer composites Guide board (© WPC Corporation...
4 – Applications in the field of urban furniture Products made with natural fibre composites Bio-based fibres  (© Stemergy...
<ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><l...
5 – Future outlooks <ul><li>Main challenges in the future </li></ul><ul><li>Disseminate knowledge on these materials to de...
<ul><li>Some bibliographic references </li></ul><ul><li>- The Eco-Design Handbook </li></ul><ul><li>Alastair Fuad-Luke - T...
<ul><li>Thank you for your attention </li></ul><ul><li>Contact : </li></ul><ul><li>Joël Lévêque </li></ul><ul><li>Tel. : +...
Upcoming SlideShare
Loading in …5
×

Human Cities : éco-composites, J. Levêque

1,086 views

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,086
On SlideShare
0
From Embeds
0
Number of Embeds
48
Actions
Shares
0
Downloads
28
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Human Cities : éco-composites, J. Levêque

  1. 1. Potential of eco-composites in the elaboration and design of urban furniture Joël LEVEQUE AtoutVeille « Human Cities - Sustainable Environmental Design » colloquium Bruxelles / Flagey - 21 may 2007
  2. 2. Preamble <ul><li>About AtoutVeille </li></ul><ul><li>French private company which provides technology-watch services in the field of platics and composites (materials, processes, equipments, …) </li></ul><ul><li>Main services : </li></ul><ul><ul><li>Technology surveys, </li></ul></ul><ul><ul><li>Sourcing of suppliers, subcontractors or partners, </li></ul></ul><ul><ul><li>Technology analysis, </li></ul></ul><ul><ul><li>Training in the field of information research and analysis. </li></ul></ul>
  3. 3. <ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><li>Applications in the field of urban furniture </li></ul><ul><li>Future outlooks </li></ul>
  4. 4. 1 – Introduction <ul><li>Context </li></ul><ul><li>Need to reduce CO 2 emissions for reducing the greenhouse effect </li></ul><ul><ul><li>Agenda 21 </li></ul></ul><ul><ul><li>Lisbon Strategy </li></ul></ul><ul><ul><li>Kyoto protocol </li></ul></ul><ul><li>New regulations on waste treatment </li></ul><ul><ul><li>Prohibition against landfill </li></ul></ul><ul><ul><li>Taxes on waste incineration (for example in Sweden) </li></ul></ul><ul><ul><li>Directives on waste treatment (WEEE or ELV directive for example) </li></ul></ul><ul><ul><li>Need to promoting eco-design and use of sustainable materials like eco-composites </li></ul></ul>
  5. 5. 1 – Introduction <ul><li>Objectives </li></ul><ul><li>To present the potential of eco-composites </li></ul><ul><li>To inform about the main characteristics of these materials </li></ul><ul><li>To present some applications of urban furniture available on the market </li></ul>
  6. 6. <ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><li>Applications in the field of urban furniture </li></ul><ul><li>Future outlooks </li></ul>
  7. 7. 2 – From materials … to eco-materials <ul><li>From materials … (cf. A. Fuad-Luke) </li></ul><ul><li>Biosphere materials : derived from the living components of the planet </li></ul><ul><ul><li>Originate from plants, animals and micro-organisms. </li></ul></ul><ul><ul><li>Renewable and readily returned to the cycles of nature. </li></ul></ul><ul><li>Lithosphere materials : derived from the geological strata of the earth’s crust </li></ul><ul><ul><li>Abundant materials (like sand, gravel, stone and clay). </li></ul></ul><ul><ul><li>But also materials whose distribution is limited (like fossil fuels, metal ores and precious metals/stones). </li></ul></ul><ul><li>Technosphere materials : generally non-renewable and not readily returned to the cycles of nature </li></ul><ul><ul><li>Embodied energy values tend to be much higher than in biosphere materials. </li></ul></ul><ul><ul><li>Biosphere and lithosphere materials are often processed to create technosphere materials. </li></ul></ul>
  8. 8. 2 – From materials … to eco-materials <ul><li>… to eco-materials (cf. A. Fuad-Luke) </li></ul><ul><li>Eco-materials : have a minimal impact on the environment but offers maximum performance for the required design task </li></ul><ul><ul><li>They can be easily reintroduced into cycles. </li></ul></ul><ul><li>Eco-materials from biosphere or bio-based materials : </li></ul><ul><ul><li>Materials derived from renewable resources, </li></ul></ul><ul><ul><li>They are recycled by nature. </li></ul></ul><ul><ul><li>NB : sometimes referred as biomaterials but this word has also another meaning (surgery materials which are compatible with living tissues) </li></ul></ul><ul><li>Eco-materials from technosphere : </li></ul><ul><ul><li>Materials which are closed-loop recycled. </li></ul></ul><ul><ul><li>They are recycled by man-made processes. </li></ul></ul>
  9. 9. <ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><li>Applications in the field of urban furniture </li></ul><ul><li>Future outlooks </li></ul>
  10. 10. 3 – Eco-composites <ul><li>Eco-composites </li></ul><ul><li>Recycled plastics </li></ul><ul><ul><li>Produced from municipal solid wastes or industrial wastes which are shredded, cleaned and pelletized. </li></ul></ul><ul><li>Wood-polymer composites </li></ul><ul><ul><li>Thermoplastic matrix or recycled thermoplastic matrix </li></ul></ul><ul><ul><li>Wood fibres or wood flour </li></ul></ul><ul><li>Natural fibre composites </li></ul><ul><ul><li>Thermoplastic matrix or bio-based matrix </li></ul></ul><ul><ul><li>Crop fibres (flax, hemp, jute, kenaf, sisal, coconut, bamboo, …) </li></ul></ul>
  11. 11. 3 – Eco-composites <ul><li>Advantages </li></ul><ul><ul><li>Recyclable </li></ul></ul><ul><ul><li>Rot-proof </li></ul></ul><ul><ul><li>Can be coloured </li></ul></ul><ul><ul><li>UV resistant </li></ul></ul><ul><ul><li>Moisture resistant </li></ul></ul><ul><ul><li>Rust resistant </li></ul></ul><ul><ul><li>Chipping resistant </li></ul></ul><ul><li>Drawbacks </li></ul><ul><ul><li>Recycling cost </li></ul></ul><ul><ul><li>Fluctuating prices of raw materials </li></ul></ul><ul><ul><li>Raw material quality </li></ul></ul><ul><ul><li>Sourcing issues </li></ul></ul>Recycled plastics
  12. 12. 3 – Eco-composites <ul><li>Wood-polymer composites </li></ul><ul><li>Advantages </li></ul><ul><ul><li>Replacement for tropical wood through domestic low value wood (while maintaining wood-like appearance) </li></ul></ul><ul><ul><li>Lower resin content than pure plastics, so lower fossil CO 2 impact </li></ul></ul><ul><ul><li>Little waste from processing </li></ul></ul><ul><ul><li>Can be sawn, cut and screwed like wood material </li></ul></ul><ul><ul><li>Better stiffness than plastics </li></ul></ul><ul><ul><li>Better weather resistance and dimensional stability than solid wood </li></ul></ul><ul><ul><li>Lifetime longer than solid wood </li></ul></ul><ul><ul><li>Recycling possible within the process </li></ul></ul><ul><ul><li>Reduced maintenance </li></ul></ul>
  13. 13. 3 – Eco-composites <ul><li>Drawbacks </li></ul><ul><ul><li>Not as « natural » than wood (environmentalist suspicion of composites) </li></ul></ul><ul><ul><li>Lower flexural strength and modulus than solid wood </li></ul></ul><ul><ul><li>Risks of moisture absorption … and swelling (depend of composition and manufacturing conditions) </li></ul></ul><ul><ul><li>Risks of fungal colonization (depend of composition and manufacturing conditions) </li></ul></ul>Wood-polymer composites Wood fibres (© Beologic) Compounds filled with wood fibres (© Beologic)
  14. 14. 3 – Eco-composites <ul><li>Advantages </li></ul><ul><ul><li>Excellent specific modulus </li></ul></ul><ul><ul><li>Biodegradable </li></ul></ul><ul><ul><li>Renewable </li></ul></ul><ul><ul><li>Good thermal and acoustic insulation </li></ul></ul><ul><ul><li>Reduced tool wear </li></ul></ul><ul><ul><li>No CO 2 emissions </li></ul></ul><ul><ul><li>Low energy requirements for production </li></ul></ul><ul><ul><li>No waste after incineration </li></ul></ul><ul><li>Drawbacks </li></ul><ul><ul><li>Low dimensional stability </li></ul></ul><ul><ul><li>Biodegradable </li></ul></ul><ul><ul><li>Water absorption </li></ul></ul><ul><ul><li>Low thermal resistance </li></ul></ul><ul><ul><li>Varying quality </li></ul></ul><ul><ul><li>Bonding to plastics is weak </li></ul></ul><ul><ul><li>Unsatisfactionary level of understanding </li></ul></ul><ul><ul><li>Broad range of prices </li></ul></ul>Main of advantages & drawbacks of crop fibres
  15. 15. 3 – Eco-composites <ul><li>Environmental advantages & drawbacks of natural fibre composites </li></ul><ul><li>Advantages </li></ul><ul><ul><li>Saving for fossil resources </li></ul></ul><ul><ul><li>Lower environmental impacts for natural fibre production </li></ul></ul><ul><ul><li>Higher fibre content or lower weight of parts due to lower density of natural fibres </li></ul></ul><ul><ul><li>End-of-life incineration of natural fibres results in energy and carbon credits </li></ul></ul><ul><li>Drawbacks </li></ul><ul><ul><li>Fertilizer use in natural fibre cultivation </li></ul></ul><ul><ul><li>Natural fibre composites could have significantly lower operating life compared to conventional composites </li></ul></ul><ul><ul><li>Water consumption for plant cultivation ? </li></ul></ul>
  16. 16. <ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><li>Applications in the field of urban furniture </li></ul><ul><li>Future outlooks </li></ul>
  17. 17. 4 – Applications in the field of urban furniture Products made with recycled plastic Walk ways (© JFC Plastics) Bench (© Baccarne Design) Barrier (© Plas Eco)
  18. 18. 4 – Applications in the field of urban furniture Products made with recycled plastic « Chatbox » (© Baccarne Design) Garden border (© Plas Eco) Bollards (© JFC Plastics)
  19. 19. 4 – Applications in the field of urban furniture Products made with recycled plastic Planter (© Ecoplastic) Play area (© Play Quest)
  20. 20. 4 – Applications in the field of urban furniture Products made with wood-polymer composites Decking (© Vannplastic) Barrier (© KindaGroup)
  21. 21. 4 – Applications in the field of urban furniture Products made with wood-polymer composites Guide board (© WPC Corporation) Pergola (© WPC Corporation)
  22. 22. 4 – Applications in the field of urban furniture Products made with natural fibre composites Bio-based fibres (© Stemergy) Hemp plant (© LCDA) Building panels (© Stemergy)
  23. 23. <ul><li>Introduction </li></ul><ul><li>From materials … to eco-materials </li></ul><ul><li>Eco-composites </li></ul><ul><li>Applications in the field of urban furniture </li></ul><ul><li>Future outlooks </li></ul>
  24. 24. 5 – Future outlooks <ul><li>Main challenges in the future </li></ul><ul><li>Disseminate knowledge on these materials to designers </li></ul><ul><li>Disseminate knowledge on urban furniture made with these materials to urbanists and architects </li></ul><ul><li>Need to promote european standardization (cf. CEN/TS 15534 WPC for example) </li></ul><ul><li>Validate selection of these materials with LCA studies (from raw material production to waste management). </li></ul>
  25. 25. <ul><li>Some bibliographic references </li></ul><ul><li>- The Eco-Design Handbook </li></ul><ul><li>Alastair Fuad-Luke - Thames & Hudson, 2004 </li></ul><ul><li>- Recyclage des thermoplastiques </li></ul><ul><li>Jean-Jacques Robin – Techniques de l’Ingénieur, 2003 </li></ul><ul><li>- Proceedings of 3rd Wood fibre Polymer Composites International Symposium </li></ul><ul><li>« Innovative Sustainable Materials applied to building and furniture » </li></ul><ul><li>March 26-27, 2007 – Bordeaux (France) </li></ul><ul><li>- Perspectives on the performance of natural plant fibres </li></ul><ul><li>P. O. Olesen & D. V. Plackett – Natural fibres performance forum, 1999 </li></ul><ul><li>- Natural fiber reinforcement materials </li></ul><ul><li>Scott W. Beckwitt – Composites Fabrication, november/december 2003 </li></ul><ul><li>- Are natural fiber composites environmentally superior to glass reinforced composites </li></ul><ul><li>S. V. Joshi, L. T. Drzal, A. K. Mohanty & S. Arora - Composites : Part A, 2004 </li></ul><ul><li>- Fibres naturelles de renfort pour matériaux composites </li></ul><ul><li>Christophe Baley – Techniques de l’Ingénieur, 2005 </li></ul>
  26. 26. <ul><li>Thank you for your attention </li></ul><ul><li>Contact : </li></ul><ul><li>Joël Lévêque </li></ul><ul><li>Tel. : +33 (0)5 56 0 21 93 </li></ul><ul><li>E-mail : info@atoutveille.com </li></ul>

×