Estrategias exitosas en el control de antimicrobianos final


Published on

presentacion sobre antibioticos de la DRa. Sandra Valderrama

Published in: Health & Medicine
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • No les realizaron biología molecular Objectives: To identify the roles of various antibiotics as risk factors for carbapenem-resistant extendedspectrum b-lactamase (ESBL)-producing Klebsiella pneumoniae (KP) infection (ESBL-KP infection). Methods: Data were collected over 26 months in a tertiary care university hospital with established endemicity of carbapenem-resistant ESBL-KP (ESBL-CRKP). Using a case–case–control design, patients who presented an infection caused by carbapenem-susceptible ESBL-KP (ESBL-CSKP) and patients with ESBL-CRKP infection were compared with a common control group of hospitalized patients. Effects of treatment and duration of treatment with antibiotics were examined, adjusting for major non-antibiotic risk factors and controlling for confounding effects among the antibiotics via logistic regression models. Results: Ninety-six ESBL-CRKP cases, 55 ESBL-CSKP cases and 151 controls were analysed. Multivariate analysis, adjusting for major non-antibiotic risk factors, showed that the risk of ESBL-CRKP infection rose with increasing duration of prior treatment with b-lactam/b-lactamase inhibitor combinations [odds ratio (OR) 1.15 per day increase; P¼0.001] and revealed that increased duration of treatment with fluoroquinolones amplified the impact of exposure to carbapenems (and vice versa) on ESBL-CRKP infection risk (OR 1.02 for interaction term; P¼0.009). Duration of prior treatment with fluoroquinolones was also associated with increased risk of ESBL-CSKP infection (OR 1.07 per day increase; P¼0.028), while prior receipt of carbapenems presented a protective effect against ESBL-CSKP infection (OR 0.21; P¼0.003). Conclusions: This study highlights the major role of treatment and duration of treatment with b-lactam/blactamase inhibitor combinations and combinations of carbapenems with fluoroquinolones. Clinicians should counterweight the potential benefits of administering these antibiotics against the increased risk of ESBLCRKP infection.
  • Estos 12 Pasos para Prevenir la Resistencia a los Antimicrobianos en adultos hospitalizados corresponden a acciones que los médicos pueden y deben tomar ahora. Los pasos tienen por objeto optimizar la seguridad de los pacientes y el resultado de la atención de las enfermedades infecciosas. En conjunto, estos pasos pueden prevenir el surgimiento y la propagación de agentes patógenos resistentes a los antibióticos .
  • Infectious diseases specialists are one important resource for providing input, but many other professionals also contribute to optimal care for patients with infections. Like all patient safety endeavors, multidisciplinary collaboration is key!
  • Busqueda sistemática en las bases: OVID MEDLINE, Embase y Cochrane de 1996–2010. Excluyen los estudio de ciclado de antimicrobianos No son explícitos en definir si existe restricción del idioma Objectives: To evaluate the current state of evidence for antimicrobial stewardship interventions in the critical care unit. Methods: We performed a systematic search of OVID MEDLINE, Embase and Cochrane electronic databases from 1996–2010. Studies were included if they involved any experimental intervention to improve antimicrobial utilization in the critical care setting. Results: Thirty-eight studies met the inclusion criteria, of which 24 met our quality inclusion criteria. The quality of research was poor, with only 3 randomized controlled trials, 3 interrupted time series and 18 (75%) uncontrolled before-and-after studies. We identified six intervention types: studies of antibiotic restriction or preapproval (six studies); formal infectious diseases physician consultation (five); implementation of guidelines or protocols for de-escalation (two); guidelines for antibiotic prophylaxis or treatment in intensive care (two); formal reassessment of antibiotics on a pre-specified day of therapy (three); and implementation of computer-assisted decision support (six). Stewardship interventions were associated with reductions in antimicrobial utilization (11%–38% defined daily doses/1000 patient-days), lower total antimicrobial costs (US$ 5–10/patient-day), shorter average duration of antibiotic therapy, less inappropriate use and fewer antibiotic adverse events. Stewardship interventions beyond 6 months were associated with reductions in antimicrobial resistance rates, although this differed by drug–pathogen combination. Antibiotic stewardship was not associated with increases in nosocomial infection rates, length of stay or mortality. Conclusions: More rigorous research is needed, but available evidence suggests that antimicrobial stewardship is associated with improved antimicrobial utilization in the intensive care unit, with corresponding improvements in antimicrobial resistance and adverse events, and without compromise of short-term clinical outcomes. Pairs of reviewers then independently assessed each of the studies (R. K. and N. D., or M. E. and S. W.) to determine whether it met pre-specified quality criteria for inclusion. These criteria were based on the Cochrane Effective Practice and Organization of Care (EPOC) Review Group inclusion criteria for randomized controlled trials, interrupted time series and controlled before-and-after studies.11 We anticipated that there would be few high-quality studies in this field, and modified the EPOC criteria to allow inclusion of uncontrolled before-and-after studies, as long as they met the following criteria: (i) measurement and reporting of potential confounding variables from the before-and-after periods; and (ii) either no statistically significant differences (P,0.05) were identified among the measured confounders, or if significant differences were identified, they were adjusted for by multivariate regression
  • Stewardship interventions beyond 6 months were associated with reductions in antimicrobial resistance rates, although this differed by drug–pathogen combination
  • We evaluated cefepime exposures in patients infected with Pseudomonas aeruginosa to identify the pharmacodynamic relationship predictive of microbiological response. Patients with non-urinary tract P. aeruginosa infections and treated with cefepime were included. Free cefepime exposures were estimated by using a validated population pharmacokinetic model. P. aeruginosa MICs were determined by Etest and pharmacodynamic indices (the percentage of the dosing interval that the free drug concentration remains above the MIC of the infecting organism [ fT > MIC], the ratio of the minimum concentration of free drug to the MIC [ fCmin/MIC], and the ratio of the area under the concentration-time curve for free drug to the MIC [fAUC/ MIC]) were calculated for each patient. Classification and regression tree analysis was used to partition the pharmacodynamic parameters for prediction of the microbiological response. Monte Carlo simulation was utilized to determine the optimal dosing regimens needed to achieve the pharmacodynamic target. Fifty-six patients with pneumonia (66.1%), skin and skin structure infections (SSSIs) (25%), and bacteremia (8.9%) were included. Twenty-four (42.9%) patients failed cefepime therapy. The MICs ranged from 0.75 to 96 g/ml, resulting in median fT > MIC, fCmin/MIC, and fAUC/MIC exposures of 100% (range, 0.8 to 100%), 4.3 (range, 0.1 to 27.3), and 206.2 (range, 4.2 to 1,028.7), respectively. Microbiological failure was associated with an fT > MIC of <60% (77.8% failed cefepime therapy when fT > MIC was <60%, whereas 36.2% failed cefepime therapy when fT > MIC was >60%; P 0.013). A similar fT > MIC target of <63.9% (P 0.009) was identified when skin and skin structure infections were excluded. While controlling for the SSSI source (odds ratio [OR], 0.18 [95% confidence interval, 0.03 to 1.19]; P 0.07) and combination therapy (OR, 2.15 [95% confidence interval, 0.59 to 7.88]; P 0.25), patients with fT > MIC values of <60% were 8.1 times (95% confidence interval, 1.2 to 55.6 times) more likely to experience a poor microbiological response. Cefepime doses of at least 2 g every 8 h are required to achieve this target against CLSI-defined susceptible P. aeruginosa organisms in patients with normal renal function. In patients with non-urinary tract infections caused by P. aeruginosa, achievement of cefepime exposures of >60% fT > MIC will minimize the possibility of a poor microbiological response. Adecuados resultados con MIC ≤8 The limitations of this study are directly related to the fact that the design was retrospective in nature. Despite our diligence in critically reviewing all data available from the medical record, prospective data collection is a preferred method. Also, while it would have been optimal to collect cefepime pharmacokinetic data for every patient, this was not possible, given our study design. Instead, we choose to use a validated population pharmacokinetic model to estimate patient-specific pharmacokinetics. The model chosen, through independent validation with data for six patients, displayed a bias, precision, and coefficient of determination of 1.64 g/ml, 17.1 g/ml, and 62%, respectively (18).
  • Los pacientes en ertapenem menos inmunosuprimidos, mas E. coli, menos choque séptico, sepsis severa, falla multiorganica, mas estancia en UCI, mayor tiempo para el cubrimiento adecuado.
  • J Infect. 2008 Aug;57(2):123-7. Epub 2008 Jul 21. Ertapenem: no effect on aerobic gram-negative susceptibilities to imipenem. Goff DA, Mangino JE. Source College of Pharmacy, The Ohio State University Medical Center, Department of Pharmacy, 410 West. 10th Ave., 368 Doan Hall, Columbus, OH 43210, USA. Abstract OBJECTIVE: To describe any potential effect on in vitro susceptibility to imipenem for aerobic gram-negative bacteria following the addition of ertapenem to the formulary of a large teaching hospital. METHODS: Changes in imipenem susceptibilities for aerobic gram-negative bacteria were compared among clinical isolates from 2002 to 2007 using a Poisson model. Changes in the susceptibility of imipenem to P. aeruginosa, K. pneumoniae, K. oxytoxa, E. coli, and S. marcescens were compared over time using a chi-squared test for trend. Carbapenem use was measured using a defined daily dose per 1000 patient days. Change in utilization was compared for all years. The prevalence of ESBL-producing K. pneumoniae, K. oxytoxa, and E. coli over time was compared. RESULTS: Susceptibility to imipenem did not change after the addition of ertapenem and this most notably includes P. aeruginosa (p=0.43). Additionally, an increase in the incidence of ESBL K. pneumoniae from 2002 (4%) to 2007 (18%) p<0.0001 occurred with significant increases in both imipenem and ertapenem use in that time frame (p<0.001). CONCLUSION: The continued use of ertapenem over 5 years with predominant use of imipenem did not select for P. aeruginosa resistance to imipenem. The rising rate of community and healthcare associated ESBL K. pneumoniae increased total carbapenem use.
  • Objective: The aim of this study was to review the effectiveness of procalcitonin (PCT)-guided therapy in comparison to standard therapy in patients with suspected or confirmed bacterial infections in terms of antibiotic prescription at inclusion, duration of antibiotic therapy, total antibiotic exposure days/1,000 days, length of stay in the intensive care unit (ICU), length of stay in the hospital, and mortality. Methods: MEDLINE, EMBASE, Web of Science, and the Cochrane central register of controlled trials were searched up to November 2008. Studies considered to be eligible were randomized controlled trials comparing PCT-guided therapy with standard therapy in adult patients with bacterial infections. No language restriction was applied. Data were combined in a meta-analysis using random-effect models. Results: Seven studies with 1,458 patients were included. PCT-guided therapy was associated with a significant reduction in antibiotic prescription at inclusion (four studies; pooled odds ratio [OR] 0.506, 95% confidence interval [CI] 0.290–0.882, p = 0.016), duration of antibiotic therapy (six studies; weighted mean difference [WMD] 2.785, 95% CI 1.225–4.345, p = 0.000), total antibiotic exposure days/1,000 days (four studies; pooled relative risk [RR] 1.664, 95% CI 1.155–2.172, p = 0.000), and length of stay in the ICU (three studies; 292 patients; pooled WMD 3.49 days, 95% CI 1.28–5.70, p = 0.002). There were no significant differences in length of stay in the hospital (three studies; pooled WMD 1.003, 95% CI – 0.430 to 2.437, p = 0.17) and mortality (seven studies; pooled OR 0.838, 95% CI 0.571–1.229, p = 0.365). Conclusions: Based on the results of this meta-analysis, it would appear that an algorithm based on serial PCT measurements would allow a more judicious use of antibiotics than currently occurs during the traditional treatment of patients with infections. PCT-guided antibiotic treatment appears to be safe and may also improve clinical outcome.
  • 1794 aislamientos de Gram negativos de IACS
  • Resumen Introducción: los infectólogos en nuestro país han desempeñado un papel importante en la prescripción hospitalaria de antibióticos, pero no se ha realizado una evaluación de la costo-efectividad de tener infectólogo en los hospitales. Objetivos: determinar el impacto de varias medidas de control en la prescripción de antibióticos implementadas por un infectólogo en una clínica de tercer nivel de Medellín, con respecto a las tasas de infección nosocomial, la sensibilidad de los gérmenes nosocomiales aislados, el consumo y costos del uso de antibióticos. Material y métodos: estudio descriptivo y prospectivo, en el cual un infectólogo implementó una política de restricción en el uso de varios antibióticos durante un año. Los resultados se expresan en porcentajes y números absolutos para ser comparados utilizando diferentes métodos estadísticos. Resultados: con la implementación de esta política, se logró recuperar o mantener la sensibilidad de varios de los gérmenes nosocomiales a antibióticos de bajo impacto biológico, logrando además disminuir el consumo general de antibióticos en un 28%, representando un ahorro neto de $551’492.934. También se evidenció una disminución en el consumo de antibióticos por dosis diarias defi nidas administradas y fi nalmente todo esto hizo posible disminuir la tasa de infección nosocomial de 2,4 a 1,44. Conclusión: contar con la asesoría de un infectólogo en los hospitales de alta complejidad, es una medida costo-efectiva para disminuir las tasas de infección nosocomial y los costos de la atención en salud, logrando mejorar o mantener los patrones de susceptibilidad de los gérmenes nosocomiales. (Acta Med Colomb 2008; 33: 58-62).
  • Objective. To study the impact of our multimodal antibiotic stewardship program on Pseudomonas aeruginosa susceptibility and antibiotic use in the intensive care unit (ICU) setting. Methods. Our stewardship program employed the key tenants of published antimicrobial stewardship guidelines. These included prospective audits with intervention and feedback, formulary restriction with preauthorization, educational conferences, guidelines for use, antimicrobial cycling, and de-escalation of therapy. ICU antibiotic use was measured and expressed as defined daily doses (DDD) per 1,000 patient-days. Results. Certain temporal relationships between antibiotic use and ICU resistance patterns appeared to be affected by our antibiotic stewardship program. In particular, the ICU use of intravenous ciprofloxacin and ceftazidime declined from 148 and 62.5 DDD/1,000 patient-days to 40.0 and 24.5, respectively, during 2004 to 2007. An increase in the use of these agents and resistance to these agents was witnessed during 2008– 2010. Despite variability in antibiotic usage from the stewardship efforts, we were overall unable to show statistical relationships with P. aeruginosa resistance rate. Conclusion. Antibiotic resistance in the ICU setting is complex. Multimodal stewardship efforts attempt to prevent resistance, but such programs clearly have their limits.
  • Estrategias exitosas en el control de antimicrobianos final

    1. 1. ESTRATEGIAS EXITOSAS EN EL CONTROL DE ANTIMICROBIANOS Sandra Liliana Valderrama Beltrán Médico Infectólogo. UN Aspirante a MSc Epidemiología con énfasis en IIH
    2. 2. Implicaciones de la resistencia microbiana La resistencia antimicrobiana es un problema mundial Impacto sobre la atención médica  Falla terapéutica  Aumento de estancia hospitalaria  Ingreso a UCI  Mayor mortalidad Impacto económico  4 billones USD anuales asociados a resistencia Saravolatz et al. Ann Intern Med 1982;96:11–16 Antimicrob Agents Chemother 1995;(Suppl.):1–23 Phelps et al. Med Care 1989;27:194–203
    3. 3. Resistencia de K. pneumoniaeen Bogotá Resistencia de A. baumannii en Bogotá
    4. 4. Relación de antimicrobianosaprobados en USA
    5. 5. Klebsiella pneumoniae KPC Resistencia a todos los betalactámicos incluyendo carbapenems Klebsiella oxytoca, Salmonella entérica, Escherichia coli, Citrobacter freundii, Enterobacter spp. y Serratia marcescens
    6. 6. Factores de riesgo para aparición de Klebsiella pneumoniae KPC Estudio de casos-controles. Hospital de tercer nivel 900 camas De Enero 2006- Abril 2007 461 aislamientos de K. pneumoniae (88 KPC)  Uso previo de quinolonas OR 1.87 (IC 95 1,07-3,26)  Uso previo de carbapenemes OR 1.83 (IC 95 1,02- 3,3)  Admisión a UCI OR 4.27 (IC 95 2,49-7,31)  Uso de al menos un A/B OR 3.93 (IC 95 1,15-13,4) 90% de los aislamiento eran clonales (KPC-2) Hussein K. Infect Control Hosp Epidemiol 2009 Jul: 30(7):666-71
    7. 7.  Estudio de casos y controles Hospital de 750 camas 96 casos y 151 controles Factores de riesgo  Interracción de carbapenems con fluoroquinolonas: OR 1.02 (1.00–1.04), p 0.009  Uso de betalactámicos mas inhibidor: OR 1.15 (1.05–1.26) p 0.001 Kritsotakis E, et al. J Antimicrob Chemother 2011; 66: 1383–1391
    8. 8. El dilema cotidiano: Uso de antibióticos y resistencia Evitar el uso innecesario de antibióticos Utilizar antibióticos potentes Acortar la exposición a los antibióticosAdaptado de Sanders CC et al. J Infect Dis1986;154:792-800
    9. 9. CDC: 12 Pasos para Prevenir la Resistencia a los Antimicrobianos: Adultos HospitalizadosPrevención de la infección Uso acertado de los antimicrobianos1. Vacune 5. Practique el control de los antimicrobianos2. Retire los catéteres: 6. Use datos locales2. Sondas vesicales- cateteres vasculares – 7. Trate la infección, no la contaminación drenes 8. Sepa rechazar la vancomicina 9. Deje de tratar si la infección se cura o esDiagnóstico y tratamiento poco probable eficaces3. Adapte el tratamiento al Prevención de la transmisión agente patógeno: Descalamiento 11. Aísle el agente patógeno4. Consulte a los expertos 12. Rompa la cadena de contagio
    10. 10. Programas de control de antimicrobianos
    11. 11. Objetivos Disminución de la resistencia antimicrobiana Disminución en el consumo de antimicrobianos Disminución de los costos por el consumo de antimicrobianos Mejorar los desenlaces clínicos  Mortalidad  Reingresos Dellit T, et al. CID 2007; 44 (15 January)
    12. 12. Programas de uso racional de antibióticos Infectología Epidemiología Dirrección hospitalaria GrupoFarmacólogo interdisciplinario Profesionales en control Microbiología de infecciones Jefes de Servicio
    13. 13. Estrategias ESTRATEGIA VENTAJA DESVENTAJAEDUCACIÓN/GUÍAS Altera patrones de Educación pasiva inefectiva comportamientoFORMULARIO/ RESTRICCIÓN Control directo, Pérdida de autonomía, educación individual horas de personalREVISIÓN/ Evita perdida de Cumplimiento de lasRETROALIMENTACIÓN autonomía, educación recomendaciones individualASISTENCIA POR COMPUTADOR Soporte al programa TecnologíaCICLADO DE ANTIBIÓTICOS Puede reducir Dificultad para lograr resistencia adherencia MacDougall, Polk. Clin Microbiol Rev 2005; 18;(4): 638–656
    14. 14.  Búsqueda sistemática de 1996–2010. Se seleccionaron 24 estudios  3 pruebas controladas aleatorizadas, 3 series de tiempo interrumpidas, 18 antes y después no controlados. Se identificaron seis tipos de intervenciones  Restricción de AB (n:6), consulta formal con infectología (n:5); implementación de guías de ajuste de AB (n:2), guías para profilaxis AB o tto (n:2), nueva evaluación formal al tercer día de tratamiento (n:3), asistencia por computador (n:6). Kaki R et al. J Antimicrob Chemother 2011; 66: 1223–1230
    15. 15.  Reducción del consumo de AB (11%–38% DDD/1000 días paciente) Disminución del costo total de AB (US$ 5– 10/paciente-día) Disminución en el promedio de la duración del tratamiento antibiótico, en el uso inapropiado y en los efectos adversos No incremento la tasa de IIH, ni la longitud de la estancia o la mortalidad Kaki R et al. J Antimicrob Chemother 2011; 66: 1223–1230
    16. 16. Herramientas Optimizar PK/PD Evitar daño colateral De-escalar Acortar los tratamientos antimicrobianos Intervenciones multimodales
    17. 17. I. OPTIMIZAR PK/PD Crandon J , Nicolau D. Critical Care Clin 2011; 27: 77-93
    18. 18. OPTIMIZAR PK/PD Objetivos Farmacodinámicos Carbapenems (fT/MIC) ≥40% PNC y cefalosporinas (fT/MIC) ≥50% Levofloxacina AUC/MIC ≥87 Simulación de Montecarlo 5000 pacientes Ciprofloxacina AUC/MIC ≥125 Análisis farmacodinámico TRUST 2008 – MIC
    19. 19. II EVITAR EL DAÑO COLATERAL “es el efecto adverso ecológico de la terapia antibiótica… esto es, la selección de microorganismos resistentes a antibióticos y el desarrollo indeseado de colonización o infección por esos microorganismos” Paterson DL et al. Clin Infect Dis 2004;38(Suppl 4):S341–S345.
    20. 20. II EVITAR EL DAÑO COLATERAL Cefalosporinas de tercera generación  Enterobacterias productoras de BLEE  Acinetobacter baumannii resistente a betalactámicos  Enterococcus resistente a vancomicina  Clostridium difficile Quinolonas  P. aeruginosa resistente a quinolonas  Enterobacterias resistentes a quinolonas (↑ relación con BLEE)  S. aureus meticilino resistente Paterson DL et al. Clin Infect Dis 2004;38(Suppl 4):S341–S345. Paterson DL et al Ann Intern Med 2004;140:26–32. Paterson DL et a Clin Infect Dis 2000;30:473–478. Lautenbach E et al Clin Infect Dis 2001;33:1289–1294.
    21. 21. USO DE CARBAPENEMS Estudio de cohorte 2005 to 2010: 261 pacientes con bacteremia por E. coli y K. pneumoniae Tasas de mortalidad: 6% vs 18%, (p 0.18). Antimicrobianl Agents Chemother 2012 Apr;56(4):2173-7.
    22. 22. USO DE ERTAPENEM Golstein et al (1) Disminución de la resistencia de Imipenem a Pseudomonas. Livermoore et al (2) Selecciona resistencia in vitro a carbapenem, pero este fenomeno ocurre brevemente in vivo. 1. Goldstein, E, et al. Antimicrob. Agents Chemother 2009; 53:5122–5126. 2. Livermore, et al. J.Antimicrob. Chemother. 2005; 55:306–311.
    23. 23. USO DE ERTAPENEM Goff et al (1) Uso de ertapenem por 5 años, no disminuyo la resistencia a imipenem, pero tampoco selecciono para resistencia. Lima et al (2) Disminución en la resistencia a carbapenems con disminución estadisticamente significativa 1. Goff, D. A., et al. J. Infect. 2008 57:123–127. 2. Lima, A. L. L, et al. Infect. Control Hosp. Epidemiol. 2009; 30:487–490.
    24. 24. III. Disminución de la duración del tratamiento antimicrobiano Revisión sistemática de  Disminución en la ensayos clínicos duración del aleatorizados tratamiento 7 estudios  Disminución en la 1458 pacientes estancia de UCI Disminución en el inicio  No disminución en del antimicrobiano mortalidad Tang H, et al. Infecion 2009; 37: 497–507
    26. 26.  Combinación de un programa de control de antimicrobianos y de control de infecciones UCI quirúrgica y de trauma (inicio en 2002) Componentes del programa  1. Desarrollo de protocolos de manejo antibiótico empírico y terapéutica en IACS  2. Protocolos de profilaxis antibiótica (AB) quirúrgica  3. Rotación trimestral de AB / limitación de terapias combinadas Dortch M, et al. Surgical Infections 2011; 12(1): 15–24
    27. 27.  2001 a 2008 La proporción de IACS por Gram negativos multiresistentes (MDR) disminuyó de 37.4% a 8.5% La tasa de IACS por Gram negativos MDR x 1000 días paciente disminuyó -0.78 por año (IC 95% -1.28, – 0.27)  P. aeruginosa -0.14 x año, A. baumannii -0.49 x año, Enterobacterias -0.14 x año Dortch M, et al. Surgical Infections 2011; 12(1): 15–24
    28. 28.  Estudio durante dos años (pre y postintervención) Intervención: Restricción de antimicrobianos y revisión/retroalimentación directa Resultados : No aumento en resistencia Disminución del consumo de AB en 28% Ahorro neto: 551.492.934 Disminución de tasa de IIH Cataño JC. Acta Med Colomb 2008; 33: 58-62
    29. 29.  Componentes del programa 1. Desarrollo de protocolos de manejo antibiótico 2. Protocolos de profilaxis antibiótica (AB) 3. Rotación trimestral de AB / limitación de terapias combinadas. Disminución de consumo deCiprofloxacina y ceftazidime resistencia No impacto en resistencia aPseudomonas spp Slain D, et al. Critical Care Res and Prac 2011
    30. 30. Experiencia en Fundación ClínicaShaio
    31. 31. Procedimiento generalMédico que formula Farmacia Hoja de Prescripción AB Niveles de Prescripción controlados Grupo de Vigilancia Indicación
    32. 32. Procesos Se realizaron guías de manejo de infecciones de la comunidad e intrahospitalarias. Se realizarón guías de profilaxis antimicrobiana Capacitación en guías en grupos focales Revistas diarias en Unidad de Cuidado Intensivo Manejo paralelo de estrategias “bundle” para el control de infecciones intrahospitalarias
    33. 33. Consumos Disminución en el consumo de ceftriaxona Disminución en el consumo de imipenem Disminución en el consumo de ciprofloxacina Disminución en el consumo de vancomicina Aumento en el consumo de ertapenem Aumento en el consumo de meropenem Aumento en el consumo de oxacilina
    34. 34. Resistencia de los aislamientos de S. aureus causantes de IIH. FCS 2008-2011 Años (número de aislamientos)
    35. 35. Resistencia de los aislamientos de E. coli causantes de IIH. FCS 2008-2011 Años (número de aislamientos)
    36. 36. Resistencia de los aislamientos de K. pneumoniae causantes de IIH. FCS 2008-2011 Años (número de aislamientos)
    37. 37. Resistencia de los aislamientos de P. aeruginosa causantes de IIH. FCS 2008-2011 Años (número de aislamientos)
    38. 38. Análisis de percentiles comparativos de resistencia en Bogotá 2010 - SHAIO SERVICIOS NO UCI Microorganismo Nombre del antibiótico Número P10 P25 P50 P75 P90 Ceftazidima 150 6 E coli Ciprofloxacina 161 29,2 Ceftazidima 39 7,7 K pneumoniae Ciprofloxacina 41 9,8 E cloacae Ceftazidima 14 21,4 Ceftazidima 34 8,8 Ciprofloxacina 35 9,8Pseudomonas aeruginosa Imipenem 35 8,6 Meropenem 35 5,7 Microorganismo Nombre del antibiótico Número P10 P25 P50 P75 P90 S. aureus Oxacilina 43 17,3 S epidermidis Oxacilina 36 72,2 E. faecium Vancomicina 2 0
    39. 39. Análisis de percentiles marcadores de resistencia 2010 - SHAIO SERVICIOS UCI Microorganismo Nombre del antibiótico Número P10 P25 P50 P75 P90 Ceftazidima 68 2,9 E coli Ciprofloxacina 70 21,4 Ceftazidima 38 18,4 K pneumoniae Ciprofloxacina 39 12,8 E cloacae Ceftazidima 16 12,5 Ceftazidima 18 16,7 Ciprofloxacina 19 15,8Pseudomonas aeruginosa Imipenem 18 5,6 Meropenem 18 16,7 Microorganismo Nombre del antibiótico Número P10 P25 P50 P75 P90 S aureus Oxacilina 50 16 S epidermidis Oxacilina 50 87,1 E faecium Vancomicina 1 0
    40. 40. CONCLUSIONES 1. Los programas de control de antimicrobiano son claves para el control de la resistencia bacteriana 2. Los programas de control de antimicrobiano para tener efectividad deben están directamente relacionados a la implementación de estrategias de control de infecciones 3. Para el éxito debe existir un grupo interdisciplinario y un compromiso institucional.
    41. 41.