Successfully reported this slideshow.
Your SlideShare is downloading. ×

100500 способов кэширования в Oracle Database или как достичь максимальной скорости обработки запросов минимальной ценой / Александр Токарев (DataArt)

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 73 Ad

100500 способов кэширования в Oracle Database или как достичь максимальной скорости обработки запросов минимальной ценой / Александр Токарев (DataArt)

Download to read offline

HighLoad++ 2017

Зал «Рио-де-Жанейро», 8 ноября, 14:00

Тезисы:
http://www.highload.ru/2017/abstracts/2913.html

Изначально будут раскрыты базовые причины, которые заставили появиться такой части механизма СУБД, как кэш результатов, и почему в ряде СУБД он есть или отсутствует.

Будут рассмотрены различные варианты кэширования результатов как sql-запросов, так и результатов хранимой в БД бизнес-логики. Произведено сравнение способов кэширования (программируемые вручную кэши, стандартный функционал) и даны рекомендации, когда и в каких случаях данные способы оптимальны, а порой опасны.
...

HighLoad++ 2017

Зал «Рио-де-Жанейро», 8 ноября, 14:00

Тезисы:
http://www.highload.ru/2017/abstracts/2913.html

Изначально будут раскрыты базовые причины, которые заставили появиться такой части механизма СУБД, как кэш результатов, и почему в ряде СУБД он есть или отсутствует.

Будут рассмотрены различные варианты кэширования результатов как sql-запросов, так и результатов хранимой в БД бизнес-логики. Произведено сравнение способов кэширования (программируемые вручную кэши, стандартный функционал) и даны рекомендации, когда и в каких случаях данные способы оптимальны, а порой опасны.
...

Advertisement
Advertisement

More Related Content

Slideshows for you (20)

Similar to 100500 способов кэширования в Oracle Database или как достичь максимальной скорости обработки запросов минимальной ценой / Александр Токарев (DataArt) (20)

Advertisement

More from Ontico (20)

Advertisement

100500 способов кэширования в Oracle Database или как достичь максимальной скорости обработки запросов минимальной ценой / Александр Токарев (DataArt)

  1. 1. 100500 способов кэширования в Oracle Database или как достичь максимальной скорости обработки запросов минимальной ценой Токарев Александр DataArt
  2. 2. Agenda • Database caches • Result cache • Result cache in DBMSs different from Oracle • Hand-made Oracle result cache implementation • Embedded Oracle result cache implementation • Performance tests • Limitations and caveats • Cases • Conclusion
  3. 3. Agenda • Retailer case • Finance case • Limitations and caveats • Loyalty case • Conclusion
  4. 4. Database caches • Buffer cache – cache for data pages/data blocks • Statement cache – cache of queries plan • Result cache – rows from queries • OS cache
  5. 5. Retailer case DWH report Oracle 11 20 Tb 300 users 20 min 350 distinct SKU 5000 rows Select sku_id, Shop_id, sku_detail(sku_id), ….. from dim_sales where …. Order by shop_id…….. Create or replace function sku_detail(sku_id number) return number is Select 1 If Select 2 Else Select 3 … … … Select 30 End; 400 lines of SQL+PL/SQL 0.2 second per SKU 5000 * 0.2 = 1000 seconds
  6. 6. Retailer case Hand-made cache DWH report Oracle 11 20 Tb 300 users 4 min 350 distinct SKU 5000 rows Select sku_id, Shop_id, sku_detail(sku_id), ….. from dim_sales where …. Order by shop_id…….. Create or replace function sku_full(sku_id number) return number is Select 1 If Select 2 Else Select 3 … … … Select 30 End; 400 lines of SQL+PL/SQL 0.2 second per SKU 350* 0.2 = 70 seconds CREATE PACKAGE BODY cache_sku AS TYPE sku_cache_aat IS TABLE OF number INDEX BY PLS_INTEGER; cache sku_cache_aat; end cache_sku; cache FUNCTION sku_detail(sku number) RETURN number IS BEGIN IF NOT cache.EXISTS(sku) THEN cache(sku) := sku_full(sku); END IF; RETURN cache(sku); END sku_detail;
  7. 7. Hand-made cache Memory 12X
  8. 8. Hand-made cache Pros: - Very fast - Easy to implement - No configuration efforts - No intra-process sync logic burden Cons: - Cache consumes expensive memory from DB - Memory is allocated per-session basis - PL/SQL or other DB stored logic is required - Vendor specific - No automatic invalidation
  9. 9. Hand-made cache Not Oracle No cache
  10. 10. Hand-made cache Not Oracle With propopulated cache
  11. 11. Case 2 Recommendation engine Oracle main Oracle DG JBoss 1 JBoss 2 Load balancer Client browser 4000 users 10000 requests per second Hazelcast cluster
  12. 12. Case 2 Recommendation engine Recommendation rules 1. 10 best recommendations by text match 2. Multilanguage capabilities 3. Should be taken from 12 previous recognized documents of the client 4. If there is no documents – from all clients of the same industry 5. If no in same industry – from clients similar by margin and e.t.c max 100 rows 2-3 columns max 100 users
  13. 13. Case 2 Recommendation engine 1 week before the Release 1. Recommendations work slow – 5 minutes for 1 document 2. Code freeze
  14. 14. Case 2 Recommendation engine Solution 1. Use database to cache queries 2. Use Oracle Database Result Cache Why 1. SQL to get recommendation works 0.5 sec, no options for query tuning – Oracle full text search engine + it is really heavy SQL 2. Same parameters appear at least 5-10 times – cache will be used 3. Data to get recommendations is refreshed 1 hour basis 4. PL/SQL is prohibited
  15. 15. Oracle Result Cache Oracle result cache 1. Memory area to share query result sets 2. Read consistent – auto invalidation during DML 3. Automatic dependency tracking 4. Minimal changes in the application 5. There is an option how not to change application 6. Could cache PL/SQL logic as well
  16. 16. Oracle Result Cache Way 1 ID of result First execution Second execution
  17. 17. Oracle Result Cache Table annotations No query changes but RC works
  18. 18. Oracle Result Cache Table annotations No annotation on JOBS table – no result cache
  19. 19. Oracle Result Cache Table annotations 2 annotations –result cache works
  20. 20. Oracle Result Cache Dependency Tracking No in dependency list
  21. 21. Oracle Result Cache Dependency Tracking
  22. 22. Oracle Result Cache Inline Views
  23. 23. Oracle Result Cache Inline Views
  24. 24. Oracle Result Cache Simple Views
  25. 25. Oracle Result Cache Invalidation
  26. 26. Oracle Result Cache Invalidation Cache is ignored for current session Good for others sessions
  27. 27. Oracle Result Cache Invalidation Invalidated after commit for others sessions!
  28. 28. Oracle Result Cache Invalidation Unexpected cache invalidation 1. SELECT FOR UPDATE statement even there were no changes at all 2. an unindexed foreign key + delete/update/insert a record from parent table 3. Update/delete statements in main table with no records affected + an update to any table where rows were affected. P.S. Result Cache doesn’t track partitions even if a result cache query works with only 1 partition. Table level tracking always.
  29. 29. Case 2 Recommendation engine Final solution 1. Do not use annotations – not all queries should be cached 2. Use /*+ result_cache*/ for long-running query 3. Performance is tested. Document recognition – 30 seconds. Time for production
  30. 30. Case 2 Recommendation engine Early morning Level 3 support Production incident Severity 1 Users can’t provide document recognition. Recognition takes 20 minutes at least. Sessions hangs. Regards, L2 support team.
  31. 31. Case 2 Recommendation engine • Active user count: 400 • Database active session count: 1200 = 400* 3 • Row count: 500 • Columns count: 5-8 X5 more!
  32. 32. Monitoring features View Name Description V$RESULT_CACHE_STATISTICS Lists cache settings and memory usage statistics V$RESULT_CACHE_MEMORY Lists all the memory blocks and corresponding statistics V$RESULT_CACHE_OBJECTS Lists all the objects(cached results and dependencies) along with their attributes V$RESULT_CACHE_DEPENDENCY Lists the dependency details between the cached results and dependencies V$SQLAREA Lists SQL statements issued inside Oracle database
  33. 33. Management features Procedure Name Description BYPASS Instruction to ignore result cache: for current session or for all DB FLUSH Clean cache MEMORY_REPORT Memory detail report STATUS Checks the status INVALIDATE Invalidates the specified result-set object Package: DBMS_RESULT_CACHE
  34. 34. V$RESULT_CACHE_MEMORY V$RESULT_CACHE_OBJECTS V$RESULT_CACHE_STATISTICS DBMS_RESULT_CACHE.MEMORY_REPORT Locks Result cache prior 12.2 – use very careful!!!
  35. 35. Case 2 Recommendation engine Investigations Strange queries for 40 small tables each minute: ETL
  36. 36. Case 2 Recommendation engine Investigations Result cache annotation Still 20 minutes per document 
  37. 37. Case 2 Recommendation engine We have received very positive feedback about Oracle Adaptive Statistic feature from customer with respect to adaptive plans. It has proved to be very able at improving system performance for a huge range of workloads. (c) Oracle 20000 queries 10 minutes per document!!! Via bug? WTF!!!
  38. 38. Result cache latches Latches are Oracle-internal low-level locks that protect the memory structures of the system global area (SGA) against simultaneous accesses.
  39. 39. Result cache latches
  40. 40. Result cache latches Type 1 When sets First row of dataset is placed in Result Cache When release Last row of dataset is placed in Result Cache Who waits Sessions with same SQL which requested the latch How much _RESULT_CACHE_TIMEOUT – 10 seconds. Next - result cache bypassed.
  41. 41. Result cache latches Type 2 When sets First row of dataset is requested from Result Cache When release Last row of dataset is read from Result Cache Who waits Sessions with same SQL which requested the latch How much It depends 
  42. 42. Result cache latches Latches not only makes SQL to wait but consumes CPU. There is no options to get rid of result cache latches – slow for concurrent environment.. Be ready to convince DBA latches wait time saves DB time.
  43. 43. Result cache statistics NAME VALUE Block Size (Bytes) 1024 Block Count Maximum 4096 Block Count Current 4096 Result Size Maximum (Blocks) 204 Create Count Success 500 Create Count Failure 0 Find Count 20000 Invalidation Count 10000 Delete Count Invalid 155 Delete Count Valid 14000 Hash Chain Length 1 Find Copy Count 1770 Latch (Share) 0 They are equal – the cache is full!!! Proper results are deleted
  44. 44. Memory estimate Result Cache Size = row width (bytes)* expected row count NAME VALUE Block Size (Bytes) 1024 Block Count Maximum 4096 Block Count Current 4096 Memory allocated by blocks!!! Result Cache Size = block size (if fits in 1024) * expected row count
  45. 45. Administration 23 undocumented parameters 6 documented parameters
  46. 46. Administration Parameter Purpose RESULT_CACHE_MAX_SIZE memory allocated to the server result cache in bytes. default – 0 bytes RESULT_CACHE_MAX_RESULT maximum amount of server result cache memory (in percent) that can be used for a single result. The default value is 5%. RESULT_CACHE_MODE Default is MANUAL which means that the cache should be requested explicitly via the RESULT_CACHE hint _RESULT_CACHE_TIMEOUT (undocumented) Maximum time a session request for a latch. Default 10 sec. 6 minutes per document!!!
  47. 47. Case 2 Recommendation engine NAME VALUE Block Size (Bytes) 1024 Block Count Maximum 4096 Block Count Current 4096 Result Size Maximum (Blocks) 204 Create Count Success 500 Create Count Failure 0 Find Count 20000 Invalidation Count 10000 Delete Count Invalid 155 Delete Count Valid 14000 Hash Chain Length 1 Find Copy Count 1770 Latch (Share) 0 A lot of updates on source tables
  48. 48. Case 2 Recommendation engine
  49. 49. Final statistics for result cache 40 seconds per document!!! NAME VALUE Block Size (Bytes) 1024 Block Count Maximum 4096 Block Count Current 4096 Result Size Maximum (Blocks) 204 Create Count Success 500 Create Count Failure 0 Find Count 20000 Invalidation Count 10000 Delete Count Invalid 155 Delete Count Valid 14000 Hash Chain Length 1 Find Copy Count 1770 Latch (Share) 0 NAME VALUE Block Size (Bytes) 1024 Block Count Maximum 8192 Block Count Current 6000 Result Size Maximum (Blocks) 204 Create Count Success 1000 Create Count Failure 0 Find Count 20000 Invalidation Count 30 Delete Count Invalid 155 Delete Count Valid 0 Hash Chain Length 1 Find Copy Count 1770 Latch (Share) 0
  50. 50. Case 2 Recommendation engine Auto-expiring SHELFLIFE = read-consistent result life time in seconds SNAPSHOT = NON-read-consistent result life time in seconds
  51. 51. Restrictions • Dictionary tables/views (sys. schema) • Temporary and external tables • Sequences (nextval and curval columns) • Non-deterministic SQL functions: current_date, current_time, local_timestamp, sys_guid… • Non-deterministic PL/SQL function: dbms_random, hand-written, … • Pipelined functions (returning rowsets) • Only IN parameter with simple data types: no CLOB, BLOB, records, objects, collections, ref cursors • The same for return result
  52. 52. Result cache inside Oracle Where in Oracle Jobs related stuff SELECT /*+ NO_STATEMENT_QUEUING RESULT_CACHE (SYSOBJ=TRUE) */ OBJ#,SCHEDULE_LMT,PRIO,JOB_WEIGHT FROM "SYS"."SCHEDULER$_PROGRAM" WHERE bla-bla-bla APEX SELECT /*+result_cache*/ NAME, VALUE FROM WWV_FLOW_PLATFORM_PREFS WHERE NAME IN ( 'QOS_MAX_WORKSPACE_REQUESTS', 'QOS_MAX_SESSION_REQUESTS', bla-bla-bla select * from v$sqlarea where upper(sql_fulltext) like '%RESULT_CACHE%‘
  53. 53. Result cache inside Oracle Dynamic sampling SELECT /* OPT_DYN_SAMP */ /*+ ALL_ROWS RESULT_CACHE(SNAPSHOT=3600) opt_param('parallel_execution_enabled', 'false') NO_PARALLEL(SAMPLESUB) NO_PARALLEL_INDEX(SAMPLESUB) NO_SQL_TUNE */ NVL(SUM(C1),:"SYS_B_0"), NVL(SUM(C2),:"SYS_B_1") FROM (bla-bla-bla Adaptive statistic SELECT /* DS_SVC */ /*+ dynamic_sampling(0) no_sql_tune no_monitoring optimizer_features_enable(default) no_parallel RESULT_CACHE(SNAPSHOT=3600) */ NVL(SUM(C1),0) FROM (SELECT /*+ qb_name("innerQuery") NO_INDEX_FFS bla-bla-bla
  54. 54. Oracle internals for result cache 1 2 3
  55. 55. Database result cache pros&cons Pros: - Minimal or no intervention at all into application code - No DB stored logic required - Read consistency - Fast in certain scenarios Cons: - Cache consumes expensive memory from database - Should be properly set up - Sometimes could lead even to performance degradation - Vendor specific
  56. 56. We are not alone
  57. 57. 1. Не расчитан размер кэша Troubleshooting Latch Free (Result Cache: RC Latch) Issues When The Result Cache is Full (Doc ID 2143739.1) 2. Блокировки Patch 14665745: DBMS_RESULT_CACHE.MEMORY_REPORT LOCKS OUT WRITERS TO THE RESULT CACHE Bug 19846066 : LATCH FREE IN RESULT CACHE WHEN QUERYING V$RESULT_CACHE_OBJECTS Patch 14665745: DBMS_RESULT_CACHE.MEMORY_REPORT LOCKS OUT WRITERS TO THE RESULT CACHE
  58. 58. We are not alone Result_cache_max_size /*+ result_cache*/ removed or dbms_result_cache.add_to_black_list or /*+ no_result_cache*/
  59. 59. We are not alone: Lessons learned Best approach to roll out updates: 1. Adjust result cache memory 2. Disable cache before bulk loading dbms_result_cache.bypass; data ingestion scripts; Issue dbms_result_cache.bypass(false);
  60. 60. Client side result cache DB Client cache is ON Client driver 2. Configuration message Connection thread 1 Connection thread 2 Result cache 3. SQL Statistics messages 1. connect 1. connect 3. Cached SQL 1 4. Results 4. Results 5. Cached SQL 1 6. Results CACHE SIZE
  61. 61. Client side result cache Invalidation Case 1 DB Client cache is ON Client driver Connection thread 1 Result cache 1. non-cached SQL 2. Invalid resultset list 2. Results t last cached SQL 1 < Invalidation lag Invalidation rules = Invalidation rules for Server Side Result Cache Invalidation
  62. 62. Client side result cache Invalidation Case 1 DB Client cache is ON Client driver Result cache 1. Get invalid result set list 2. Invalid result set list Current time = t Invalidation message + Invalidation lag Invalidation rules = Invalidation rules for Server Side Result Cache Invalidation
  63. 63. Client side result cache Configuration Parameter Purpose CLIENT_RESULT_CACHE_LAG maximum time in milliseconds that client result cache can lag behind changes in the database that affect its result sets. Default 3000 milliseconds CLIENT_RESULT_CACHE_SIZE the maximum size of the client result set cache for each client process. Default 0 – not active, min - 32KB, max – 2G
  64. 64. Client side result cache
  65. 65. Client side result cache
  66. 66. Client side result cache NAME VALUE Block Size (Bytes) 256 Block Count Maximum 256 Block Count Current 3 Create Count Success 1 Create Count Failure 0 Find Count 9 Invalidation Count 0 Delete Count Invalid 0 Delete Count Valid 0 = 10
  67. 67. Client side Result cache pros&cons Pros: - Cheap client memory - JDBC and .NET drivers - Minimal or no intervention at all into application code - Significant CPU, I/O, network roundtrip reduction - No extra caching layer/API is required - No latches Cons: - Eventual read consistency with delay - Oracle OCI client should be installed - Vendor specific - 2 Gb per client limitation - Not enough information about production
  68. 68. Hand-made cache bad scenario • Cache invalidation in case of data changes is a must • Database stored logic isn’t in favor • There is strong database developers team • PL/SQL business logic is already in place • There are limitations which don’t permit others caching techniques Hand-made cache good scenario
  69. 69. Server side Result cache bad scenario • SQL populates a large number of distinct result sets • SQL statement takes more than _RESULT_CACHE_TIMEOUT • Cached results are requested very often from many sessions Result cache good scenario • Queries have a limited number of possible result sets • Result sets are relatively small (200-300 rows) • SQL statements are relatively expensive • Queries run against relatively static tables • There is a strong DBA
  70. 70. Client side Result cache bad scenario • Instant cache invalidation in case of data changes is a must • Thin drivers are required • There is fine middle-tier developers team • Middle tier uses a lot of SQL without any caching layer • There are DB server hardware limitations Hand-made cache good scenario
  71. 71. Conclusion 1. Estimate memory size properly: volume (Mb) = ( number of result rows * block size+ avg number of apex usage + avg number adaptive statistic usage )/1024 2. Add auto-cleaning capabilities with (snapshot + shelflife) options 3. Bypass the cache during bulk data changes 4. Adjust _result_cache_timeout to expected queries duration 5. Never use FORCE mode for all database 6. Check does FORCE used as expected in table annotations 7. Decide about adaptive statistics: _optimizer_ads_use_result_cache = false
  72. 72. Q&A
  73. 73. Alexander Tokarev Database expert DataArt Alexander.Tokarev@dataart.com THANK YOU. WE ARE HIRING!

Editor's Notes

  • Добрый день. Меня зовут Александр и я занимаюсь в компании DataArt вопросами, связаными с базами данных как в части построения систем «с нуля», так и оптимизации имеющихся.
  • Итак, у нас сегодня штатная презентация по архитектуре очередного решения от СУБД Oracle для ускорения данных.
    Сегодня я буду рассказывать многих важных вещах таких как...
    Хотя не, слишком скучно.
    Ценность данной конференции в том, что тут рассказывается не о технических деталях, которые можно найти в google, а о практическим примерах их использования и их нюансах
  • В данном докладе я буду рассказывать как устроена технология server side Result cache и чем она лучше чем самодельное кэширование на plsql на примерах двух проектов Компании DataArt. Далее мы подытожим результаты этих проектов и выработаем некие подходы к правильной работе с данной технологией. Так же очень поверхностно посмотрим, что могут предложить другие СУБД относительно кэширования результатов запросов.
    Вооруженные набором знаний мы попробуем понять причины сбоя в российской cloud системе расчёта лояльности, который имел недавно место быть по причине того самого result cache.

    У Оракла есть client side result cache, я поверхностно расскажу об его архитектуре, но без детализации – он сам по-себе тема отдельного доклада.
  • Есть 3 основных вида кэшей в базах данных: кэш данных, кэш операторов и их планов и кэш результатов строк. Интересно заметить, что последний пункт из известных мне БД остался только в Oracle. В postgress result cache нет. Он присутствует только в стороннем продукте pgpool. Это связано с некими сложностями, которые мы рассмотрим ниже.
  • Итак. Кейс 1. Хранилище ретейлера.
    Было хранилище и в нём был отчёт. Получение его занимало около 20 минут и пользователи печалились. В чем была интрига данного отчёта? В нём на 5000 строк данных было 350 уникальных товаров, но для каждой строчки вызывалась функция получения информациии по товару. Функция по коду была довольно сложная, тяжело поддающаяся рефакторингу и многие вещи в ней было просто боязно переписывать. Так как система находилась на поддержке, то использовать что-то новое типа embedded result cache было запрещено, поэтому был использован стандартный подход с hand-made кэшированием.
  • Итак, мы переименовали долгую функцию, а вместо нее создали пакет и функцию, которая использует ассоциативный массив в данном пакете. Данный массив это фактически on demand cache. Если в нём данных нет, то происходит вызов функции.
  • Важно понимать, в какой из областей памяти расположены коллекции. Помещаются они в области памяти, которая называется PGA, выделяемой под каждую сессию. Именно это определяет их достоинства и недостатки.
  • Итак, самодельные кэши.
    Плюсы очевидны: легко запрограммировать, никакой конфигурации, нет необходимости думать о синхронизации, да они просто быстрые!
    Минусы тоже понятны: если в проекте запрещена хранимая логика их невозможно использовать, нет механизма автоматической инвалидации и так как память на кэш выделяется в рамках одной сессии БД, а не экземпляра, то её потребление завышено. Более того, в случае с вариантом использования connection pool необходимо не забывать сбрасывать кэши если для каждой сессии кэширование должно быть разное.
    Существуют ещё другие варианты hand-made кэшей на основе materialized views, temporary tables, но от них идёт бОльшая нагрузка на систему ввода-вывода, поэтому они не рассматриваются в данной презентации. Они более склонны для других баз данных. Варианты с oracle client cache и scalar subquery caching я тоже не рассказываю, так как по ним мало эффектных кейсов, но после доклада готов рассказать.
  • Рассмотрим как часто решают задау кэширования в MsSQL для получения списка сопутствующих товаров.
  • Таблицу GetRelatedItems пересчитывают, например, периодическим заданием или перед началом работы с соответствующим куском функционала. Если в ней данных нет, обращаются к сложному view.

    В целом, подход относительно похож, но работает не в памяти БД как в части получения данных, так и первичного заполнения, засчёт этого может быть медленнее.

    В общем, самодельные result cache активно используются, но иным подходом к реализации данной задачи является in-database result cache. Его и как не получилось quick win мы рассмотрим далее...
  • Теперь рассмотрим второй кейс. Это система полуавтоматизированной обработки финансовой документации. Архитектура системы стандартна для Enterprise. Клиент, балансировщик, 2 джейбоса для расчёта бизнес-логики, база данных Oracle и её резервный экземляр.
  • Одной из множества задач является задача коррекции документов после их автоматического распознавания.
    Упрощённо говоря она выглядит так
    Есть документы, для каждого нераспознанного автоматически системой показателя предлагается набор показателей либо из предыдущих документов клиента, либо из похожей индустрии, либо по похожей доходности, при этом ещё сравнивает с распознанным значением, чтобы не предложить лишнее. Что важно документы многоязычные.
    Пользователь выбирает нужное значение и повторяет для каждой пустой строчки.

    Важно отметить, что показатели повторяются как в строках, так и столбцах.

    В целом задача по

  • 1 неделя до релиза
    На обработку документа уходит минимум 5 минут
    Java код менять нельзя
    В команду разработки баз данных приходят с просьбой о помощи
  • Принимаем решение использовать базу данных и Oracle Result cache так как
    Возможности по оптимизации исчерпаны
    Параметры активно повторяются
    Данные рекомендаций редко обновляются, так как используют полнотекстовый индекс
  • Что такое result cache. Это технология от Oracle по кэшИированию результатов с минимальным влиянием на приложение.
  • Как же всё это выглядит. По-факту он включается указанием инструкции result_cache. На втором выполнении видно, что никаких операций с базой данных не происходит. Всё получается из кэша. Как мы видим изменения минимальны.
  • Есть второй способ, а именно аннотации. Они включают result_cache для таблицы если она участвует в запросе.
  • Если хоть одна из таблиц без аннотации, то result_cache исчезает.
  • Если все с ним, то весь запрос кэшируется.
  • Для SQL зависимости определяются через план запроса, что весьма забавно, так как Oracle может преобразовывать запрос выкидывая ненужные таблицы из запроса и их не окажется в списке зависимостей. Например, в запросе на слайде применена трансформация join elimination из-за того, что есть FK и таблицы нет в зависимостях.
  • Убираем constraint и Oracle пересчитывает дерево зависимостей. Для plsql кода зависимости определяются в run-time. Это позволяет делать даже dependency tracking для динамического sql и сложной условной логики.
  • Оракл позволяет кэшировать результаты не только всего запроса целиком, но и его части. Это либо inline view как в виде with.
  • Так и в виде from.
  • Более того, можно создать кэшированное view. Например, в джоине таблица прочиталась как обычно, а вью было взято из кэша результатов.
  • Итак, посмотрим когда же Оракл инвалидирует result cache.
    Видно, что если в рамках своей сессии произошли изменения, то кэш игнорируется именно в этой сессии. Другие сессии продолжают использовать сохранённый результат. Как только происходит операция commit и другие сессии ожидают нового результата.
  • Итак, посмотрим когда же Оракл инвалидирует result cache.
    Видно, что если в рамках своей сессии произошли изменения, то кэш игнорируется именно в этой сессии. Другие сессии продолжают использовать сохранённый результат. Как только происходит операция commit и другие сессии ожидают нового результата.
  • Как только мы подтверждаем наши изменения они становятся неактуальными для других сессий
  • К сожалению, не все так гладко. Oracle производит инвалидации и в ряде неочевидных случаев.
    1. При любом вызове select for update
    2. Если в вашей таблице есть неиндексированый внешний ключ и в его родительской таблице произошло изменение данных. Это произойдёт даже если родительская таблица не упомянута в запросе.
    3. Неудачный апдейт по основной таблице и удачный по другойstatement
    Выглядит, что на самом деле обновление учитывает факт наличия блокироки, факт попытки апдейта и количество задействованных строк отличное от нуля, причём всё равно в какой из таблиц.
  • Итак, мы изучили всё вышеуказанное и решили идти в прод
  • Придя утром на работе мы обнаружили письмо примерно следующего содержания. Почему зависают сессии? Каким образом 30 секунд превратились в 20 минут?

    В общем, мы начали разбираться.
  • Мы увидели 40 пользователей, делающих распознавание и даже упустим тот факт, что их не 10, как мы ожидали. Гораздо более странно, что было видно, что в базе данных количество сессий всегда было ровно в 3 раза больше.
    Проведя внутреннее расследование мы выяснили, что java разработчики делают распознавание в 3 потока.
    И это было ещё не на пике. Это была наша первая ошибка. Мы неодоценили нагрузку. Но в целом всё равно такого проседания быть было не должно. Почему резалт кэш не любит частое к нему обращение расскажу позже.
  • Для поиска проблем в result_cache нам понадобится небольшой набор view и хранимых процедур.
  • Самая важная для нас процедура – процедура получения информации о памяти
  • Что важное я хочу отметить, что в документации про данные случаи не указано. Это видно только из support notes. Таким образом, всё нюансы result cache ТОЛЬКО на саппорте.
  • Мы решили понять, сколько же у нас закэшировано объектов. Для этого мы воспользовались представлением v$result_cache_objects. Записей было явно много больше чем мы ожидали.
    Также мы решили посмотреть, что же это за объекты. Мы были сильно удивлены, но это были не наши запросы. Причем по характеру видно, что это явно ETL-процесс.
  • И мы вспомнили, что сами включили для этих таблиц аннотации, так как из них довольно часто приложению требовались данные и там кэширование было уместно. Однако запросы к таблицам с интервалом 1 минуты на поиск изменённых данных наводнили кэш приведя к вымыванию наших запросов. Анотации мы отключать не стали, но отключили принудительно кэширование в etl.
    Мы почистили объекты, но скоро их количество вернулось к 120000. Мы продолжили изучать, что же ещё кэшируется, так как скорость не менялась.
  • Мы обнаружили следующие запросы. Это были запросы от Adaptive Statistics, которую Oracle применяет для построения планов.
    На форуме поддержки мы довольно оперативно нашли баг про этот функционал и result cache. Отключили использование result cache и производительность улучшилась до 10 минут за документ.
    Что же такое за latch free, которые возникают при result cache?
  • Итак, что такое latch и к чему они приводят
    Так как нам неоходимо обеспечить согласованность по чтению, то необходимо использовать блокировки. Result cache это единственное место, где читатели могу заблокировать читателей.
  • Оракл пытается установить защёлку несколько раз и потом засыпает
  • Рассказ про latch
  • Рассказ про latch
  • Итак, мы получили отчёт об использовании памяти.

    Подскажите, по каким показателям можно понять, что что-то пошло не так?


    Таким образом, стало понятно, что памяти не хватает из-за некорректного расчёта её объёма.
  • Таким образом, стало понятно, что памяти не хватает из-за некорректного расчёта её объёма.

    Мы использовали следующую формулу: ширина строки результатов * ожидаемое кол-во результатов, но не учли, что выделение памяти происходит блоками размером минимум 1 Кб.

    Что и привело к известным ошибкам в процессе переполнения кэша.

    Как же надо рассчитывать память? А считать её надо в блоках.
  • Итак, неужели нам нужны все эти параметры? Конечно же нет!
  • Как уже упоминалось досточно четырёх. В кейсе мы обошлись одним – общим размером памяти.
  • Хотя мы и достигли улучшения с 20 минут до 6 время продолжало быть неприемлемым. Посмотрим, что нам ещё может дать отчёт об использовании кэша.

    Видите ли вы что в отчёте ещё странного?
  • Путём неких изысканий мы обнаружили, что отключен джоб обновления рекомендаций, что на самом деле приводило их обновлению данных сразу же .

    Мы запустили джоб с часовым интервалом как и было задумано, что автоматически отключило функционал постоянного обновления таблицы.
  • Итак, количество инвалидаций уменьшилось до минимального, удаление корректных записей исчезло, а производительность вернулась в ожидаемые границы даже при пятикратном увеличении нагрузки.
  • Мы не захотели, чтобы данная ситуация повторилась в дальнейшем и изучая как же Oracle использует result cache в ядре, обнаружили, что для ряда вещей используется недокументированный параметр shelflive по истечению которого результат запроса самоудаляется из кэша. Этот параметр был встроен в новую версию приложения. Важно, что он так же удаляется, если было изменение данных.

    Если факт изменения не критичен для кэша, можно воспользоваться опцией SNAPSHOT – тогда изменения данных не будут инвалидировать кэш.
  • Если вы не испугались после наших кейсов result cache то есть ещё ряд неозвученных ограничений, ряд из которых очевиден.
    Нет возможности кэширования объектов в схеме SYS
    Нельзя кэшировать временные и внешние таблицы. Важно, что по-факту можно и оракл это явно не ограничивает. Это приводит к тому, что можно увидеть то, что раньше было немыслимо, а именно, содержимое временных таблиц других пользователей. Более того, оракл декларирует, что это исправлено, но в 12.2 до сих данная проблема есть.
    Нелязя использовать недетерменированные sql и pl/sql функции
    Конвеерные функции
    Входные и выходные параметры должны быть простых типов данных.

    На самом деле есть подходы как обходить ограничения с current_date. Могу показать скрипты после докладка.
  • Result cache широко используется ядром оракла. Для поиска таких мест можно использовать запрос к шаред пулу.
    Очень активно кэш используется при работе с джобами, средой разработки приложений APEX. Обратите внимание на недокументированную опцию sysobj – я её нашёл именно тут.
  • Также через резалт кэш сохраняется информация по адаптивной статистике и dynamic sampling – механизмам корректной генерации статистики и трансформации планов. Что важно данные механизмы используют опцию snapshot, которую я именно тут и обнаружил.
  • Кратко подитожим работу result cache:
    Данные при запросе попадают с уровня хранения в буферный кэш
    Данные из буферного кэша попадают в область памяти result cache
    Результаты переиспользуются с использование блокировок

    Исходя из услышанного сведём достоинства и недостатки.
  • Рассмотрим сначала плюсы.
    Можно не менять код приложения вообще или свести изменения к минимуму
    Не требуется использовать внутренние языки программирования
    Целостность данных при многопользовательском доступе через автоматическую инвалидацию
    Может быть очень быстрым

    Минусы мы уже увидели:
    Кэш должен быть правильно использован. При неправильном сценарии может привести к иллюзии роста скорости, а потом её падению
    База данных должна быть правильно настроена
    Решение очень проприетарное (хотя я не верю в миф независимости приложения от базы данных)

    Хочется отметить, что даже системы, разрабатываемые Oracle наткнулись на проблемы с некорректным использованием result cache.
  • Например, даже erp система Oracle E-Business suite склонна к падениям по причине некорректного использования result cache.

    Однако нам интересны не сам факт наличия проблем, а способы их недопущения, так как сейчас мы имеем достаточно информации для их предотвращения. В процессе подготовки презентации было обнаружено письмо службы технической поддержки крупнейшей российской cloud системы рассчёта лояльности. На ней рассчитывают свои параметры известные сети по продаже косметики, торговые марки индустрии красоты, крупные ретейлеры электроники.

    Итак, переходим к непосредственно письму.
  • Рассмотрим технические причины, которые вполне очевидно привели к сбою
    Блокировки из-за неправильного размера кэша при bulk заливке, которая наверняка была в той самой подготовительной работе
    Возможно это всё же v$result_cache_memory или dbms_result_cache.memory_report, так как по нему баг не закрыт. Однако, тесты багов написаны так хитро, что в них фактически явно говорится, что в v_result_cache_objects есть ошибка.
  • Итак, после был
    изменён параметр result_cache_max_size
    Скорее всего убран /*+ result_cache/ или созданы black_list или добавлен no_result_cache

    Как мы видим, были предприняты практически идентичные действия как в случае с Recommendation engine.

    Как же надо было провести безболезненное обновление?
  • Что бы надо было сделать на самом деле:

    Оценить на сколько изменится итоговый размер кэша. Формула расчёта будет приведена позднее.
    Уменьшить влияние заливки набора данных в result cache: разово после загрузки, а не сразу же по каждому оператору
    Проверить анонсированые Oracle исправления перед накатом изменений
  • Как мы заметили основаная проблема кэшей на сервере это расход дорогой серверной памяти. Для решения этой проблемы есть решение Client side result cache.

    Он работает так. Есть база данных и драйвер. При попытке подключения запрашивается конфигурация с БД и поднимается кэш.

    ...........
    Остальные потоки сразу же запрашивают общий кэш драйвера тем самым экономя память и ресурсы сервера.

    Иногда в зависимости от нагрузки драйвер присылает в БД статистику по использования кэша, которую потом можно будет посмотреть.
  • Правила инвалидации клиентского кэша такие же как и для серверного, но гораздо интереснее посмотреть как это происходит в динамике.

    Есть 2 случая инвалидации. Первый – когда запросы идут часто и не наступил Invalidation lag.

    В таком случае поток пойдёт в базу данных, обновит кэши и считает данные из него.
  • Ежели никаких запрос в период от прихода сообщения до Invalidation lag не было, то сам драйвер через Invalidation lag запросит список инвалидированных резалтсетов.

    Таким образом кэш обеспечивает самоподдерживаемость.
  • Итак, посмотрим как надо сконфигурировать БД, чтобы заработал client side result cache.

    Всё весьма просто.

    Есть 2 параметра, которые мы уже упомянали.

    Посмотрим на примеры кода с использованием клиентского кэша.
  • Вот пример кода на .net.
    Как мы видим в коде нет ничего такого, что включает клиентский кэш. Однажды активировав его на сервере мы на клиенте указываем уже известный хинт result_cache
  • java
  • Собственно после того как выполнено java-приложении можно посмотреть как оно использовало клиентский result cache.

    Это табличка, при отключении сессии записи удаляются

    Тут указан запрос для текущей сессии, но в целом надо искать по sid из session_connect_info. Почему Oracle не вынес это прямо в данную таблицу (а это таблица, а не view) я понять не смог.
    Именно поэтому я считаю, что этот функционал не очень востребован, хотя как мне кажется очень нужен.
  • Достоинства, как всегда следуют из архитектуры.
    Дешёвая память Любые драйвера Минимальное изменение кода приложения Сильное уменьшение нагрузки на базу данных
    Отсутствие необходимости использовать дополнительные программные продукты для кэширования

    Минусы понятны
    Согласованность по чтению с задержкой
    Необходимость толстого клиента, решение от вендора, максимум 2 Гб на клиента и как-то подозрительно мало багов на саппорте (я нашел около пяти), что говорит о малом использовании в production. Или бы иначе никто не стал пользоваться кэширующим сервером Oracle Oracle coherence.

    Исходя из всех кейсов мы можем окончательно сформулировать плохие и хорошие сценарии для использования всех видов кэшей
  • Первый случай – если после изменения данных кэш должен мгновенно стать неактуальным. Для самодельных кэшей тяжело создать корректную инвалидацию в случае изменения объектов, на которых они построены.
    Если использование хранимой в БД логики запрещено политиками разработки
  • Если кэш будет наполнен множеством разных значений, то они не будут переиспользоваться. Например, кэш созданный по идентификаторам транзакций бесполезен по причине того, что транзакции не так часто ищутся.
    Все аналогичные запросы подвисают на время данного таймаута ожидая выполнения главного запроса
    Одновременный многопользовательский доступ провоцирует возникновение блокировок
  • Первый случай – если после изменения данных кэш должен мгновенно стать неактуальным. Для самодельных кэшей тяжело создать корректную инвалидацию в случае изменения объектов, на которых они построены.
    Если использование хранимой в БД логики запрещено политиками разработки


    Есть команда разработки средней квалификации
    Уже используется много SQL без использования внешнего кэширующего слоя
    Есть ограничения по ресурсам сервера СУБД
  • Оцените верно размер памяти с учётом количества запросов, а не количества результатов.
    Не бойтесь использовать auto-expiring. Он сохранит место удаляя неиспользуемое.
    Не перегружайте запросами во время загрузки больших объемов данных
    Прогревайте кэш
    Убедитесь, что _result_cache_timeout соответствует вашим ожиданиям
    НИКОГДА не используйте FORCE для БД
    Проверяйте, адекватно ли используется FORCE для таблиц
    Проверьте find count и убедитесь надо ли вам использовать result cache для адаптивной статистики
  • I would like to tell thank you for you time and questions once again. Good luck in your projects.

×