Keynote at 4th International Symposium on Secuirty in Computing at Communications

IIIT Hyderabad
IIIT Hyderabad IIIT Hyderabad
Privacy	
  and	
  Security	
  in	
  Online	
  
Social	
  Media	
  
Keynote	
  @	
  SSCC’16	
  
Sept	
  22,	
  2016
Ponnurangam	
  Kumaraguru	
  (“PK”)
Associate	
  Professor
ACM	
  Distinguished	
  Speaker
fb/ponnurangam.kumaraguru,	
  @ponguru
Who	
  am	
  I?	
  
– Associate	
  Professor,	
  IIIT-­‐Delhi	
  	
  
– Ph.D.	
  from	
  School	
  of	
  Computer	
  Science,	
  	
  
Carnegie	
  Mellon	
  University	
  (CMU)	
  	
  
– Research	
  interests	
  
-Social	
  Computing,	
  Computational	
  Social	
  Science,	
  
Complex	
  Networks	
  pertaining	
  to	
  Human	
  Behavior,	
  
specifically	
  in	
  the	
  context	
  of	
  Security	
  &	
  Privacy
– Co-­‐ordinate	
  and	
  manage	
  Precog,	
  
precog.iiitd.edu.in
– ACM	
  Distinguished	
  Speaker	
  
2
https://www.youtube.com/channel/UCHWDvG
Dh4QjWbV79bM2neSg
3
4
What	
  we	
  dabble	
  with!	
  
Non-­‐trustworthy	
  Content
FAKE
5
$
RUMORS
Methodology
6
Training	
  Data
– 500	
  Tweets	
  per	
  event
– Used	
  CrowdFlower
7
Event Tweets Users
Boston	
  Marathon	
  Blasts	
  (2013) 7,888,374 3,677,531
Typhoon Haiyan /	
  Yolanda	
  (2013) 671,918 368,269
Cyclone	
  Phailin (2013) 76,136 34,776
Washington	
  Navy yard shootings (2013) 484,609 257,682
Polar	
  vortex cold wave (2014) 143,959 116,141
Oklahoma	
  Tornadoes (2013) 809,154 542,049
Total	
  	
   10,074,150 4,996,448
Credibility	
  Modeling	
  
8
Feature	
  set	
   Features (45)	
  
Tweet	
  meta-­‐data	
  
Number	
  of	
  seconds	
  since	
  the	
  tweet;	
  Source	
  of	
  tweet	
  (mobile	
  /	
  web/	
  
etc);	
  Tweet	
  contains	
  geo-­‐coordinates
Tweet	
  content	
  (simple)	
  
Number	
  of	
  characters;	
  Number	
  of	
  words;	
  Number	
  of	
  URLs;	
  Number	
  of	
  
hashtags;	
  Number	
  of	
  unique	
  characters;	
  Presence	
  of	
  stock	
  symbol;	
  
Presence	
  of	
  happy	
  smiley;	
  Presence	
  of	
  sad	
  smiley;	
  Tweet	
  contains	
  
`via';	
  Presence	
  of	
  colon	
  symbol
Tweet	
  content	
  (linguistic)	
  
Presence	
  of	
  swear	
  words;	
  Presence	
  of	
  negative	
  emotion	
  words;	
  
Presence	
  of	
  positive	
  emotion	
  words;	
  Presence	
  of	
  pronouns;	
  Mention	
  
of	
  self	
  words	
  in	
  tweet	
  (I;	
  my;	
  mine)
Tweet	
  author	
   Number	
  of	
  followers;	
  friends;	
  time	
  since	
  the	
  user	
  if	
  on	
  Twitter;	
  etc.
Tweet	
  network	
  
Number	
  of	
  retweets;	
  Number	
  of	
  mentions;	
  Tweet	
  is	
  a	
  reply;	
  Tweet	
  is	
  a	
  
retweet
Tweet links	
   WOT	
  score	
  for	
  the	
  URL;	
  Ratio	
  of	
  likes	
  /	
  dislikes	
  for	
  a	
  YouTube	
  video
Implementation
Feedback	
  by	
  Users
10
v
Harvard	
  (1839)	
  – Harvard	
  – Harvard	
  – Harvard	
  – MIT	
  –
Northwestern	
  – UIUC	
  – WUSL	
  – CMU	
  (2009)	
  – IIITD	
  
(2015)	
  	
  	
  	
  
12
http://twitdigest.iiitd.edu.in/TweetCred/
13
De-­‐duplicating	
  audience
Social	
  audience	
  	
  =	
  437,632	
  +	
  153,000	
  +	
  805,097	
  or	
  less??
14
Challenges
15
ProfessionalOpinion
Dating
Heterogeneous	
  OSNs
Personal
Degree	
  of	
  Details
Quality	
  and	
  descriptive	
  personal	
  
And	
  professional	
  information
Little	
  personal	
  information	
  
Descriptive	
  opinions
Attribute	
  Evolution
Time
Information	
  evolved	
  on	
  one	
  but	
  
not	
  on	
  other
{jainpari,	
  Bangalore}
Registration	
  with	
  same	
  
information	
  on	
  both	
  OSNs
{paridhij,	
  New	
  Delhi}
Generic	
  Identity	
  Resolution
16
Extract	
  
available	
  &	
  
discriminative
features
Candidate	
  
Identities
IDENTITY	
  SEARCH IDENTITY	
  LINKING
Pairwise	
  
Comparisons
Heuristic	
  Identity	
  Search
17
cerc.iiitd.ac.in
Profile
Content
Self-mention
Network
Syntactic
and Image
Search Linking
If self-identified /
returned by
more than one
search method
No
Yes
Candidate
Identities
name,
location,
username
mobile no,
post,
friends,
followers
Paridhi	
  Jain,	
  Ponnurangam Kumaraguru,	
  and	
  Anupam Joshi.	
  2013.	
  @I	
  seek	
  ‘fb.me’:	
  Identifying	
  Users	
  across	
  Multiple	
  Online	
  Social	
  
Networks.	
  In	
  Proceedings	
  of	
  the	
  22nd	
  International	
  Conference	
  on	
  World	
  Wide	
  Web,	
  WWW	
  ’13	
  Companion.	
  ACM,	
  New	
  York,	
  NY,	
  USA,	
  
1259-­‐ 1268.	
  DOI=http://dx.doi.org/10.1145/2487788.2488160	
  	
  [Honorable	
  Mention	
  Award}	
  
Harvard	
  (1839)	
  – Harvard	
  – Harvard	
  – Harvard	
  – MIT	
  –
Northwestern	
  – UIUC	
  – WUSL	
  – CMU	
  (2009)	
  – IIITD	
  
(2016)	
  	
  	
  	
  
18
19
20
How	
  many	
  of	
  you	
  have	
  posted	
  
mobile	
  numbers	
  on	
  Online	
  Social	
  
Networks?
How	
  many	
  of	
  you	
  have	
  seen	
  
mobile	
  numbers	
  being	
  posted	
  on	
  
Online	
  Social	
  Networks?
Sample	
  posts
21
Sample	
  posts
22
Sample	
  posts
23
Sample	
  posts
24
Data	
  statistics
– Twitter:	
  12th	
  October	
  2012	
  – 20th	
  October	
  2013
– Facebook:	
  16th	
  November	
  2012	
  – 20th	
  April	
  2013
25
Numbers Category	
  +91 Category	
  0 Category	
  void Total
Twitter Facebook Twitter Facebook Twitter Facebook Twitter Facebook
Mobile	
  
Numbers
885 2,191 14,909 8,873 25,566 25,294 41,360 36,358
User	
  
profiles
1,074 2,663 17,913 9,028 31,149 25,406 49,817 36,588
26
SocialCaller	
  App
27
https://play.google.com/store/apps/details?id=com.ayush.socialcaller&hl=en
28
20	
  Interviews 4	
  FGDs
10,427	
  Surveys
#privacyindia12	
  Methodology
18	
  months!
0.08
7.73
0.14
7.10
1.10
6.88
0.28
8.14
1.96
8.58
0.52
0.21
0.74
3.19
9.38
0.35
0.03
0.04
0.25
2.94
11.29
0.02
8.57
0.05
9.39
9.53
0.21
0.17
9.390.48
0.02
0.03
0.01
0.08
Sample	
  
Demographics
Gender	
  (N=	
  10,232)
Male 67.57
Female 32.43
30
Age	
  
(N=10,350)
<18 1.54
18-­‐24 21.31
25-­‐29 32.20
30-­‐39 25.90
40-­‐49 14.09
50-­‐64 4.46
65+ 0.50
Age
Internet	
  &	
  Social	
  Media
What	
  do	
  you	
  feel	
  about	
  privacy	
  of	
  your	
  personal	
  
information	
  on	
  your	
  OSN?	
  
31
Q42,	
  N	
  =	
  6,855
It	
  is	
  not	
  a	
  concern	
  at	
  all	
  
Since	
  I	
  have	
  specified	
  my	
  privacy	
  settings,	
  my	
  
data	
  is	
  secure	
  from	
  a	
  privacy	
  breach	
  
Even	
  though,	
  I	
  have	
  specified	
  my	
  privacy	
  
settings,	
  I	
  am	
  concerned	
  about	
  privacy	
  of	
  my	
  
data	
  
It	
  is	
  a	
  concern,	
  but	
  I	
  still	
  share	
  personal	
  
information	
  
It	
  is	
  a	
  concern;	
  hence	
  I	
  do	
  not	
  share	
  personal	
  
data	
  on	
  OSN	
  
Internet	
  &	
  Social	
  Media
What	
  do	
  you	
  feel	
  about	
  privacy	
  of	
  your	
  personal	
  
information	
  on	
  your	
  OSN?	
  
32
Q42,	
  N	
  =	
  6,855
It	
  is	
  not	
  a	
  concern	
  at	
  all	
  
Since	
  I	
  have	
  specified	
  my	
  privacy	
  settings,	
  my	
  
data	
  is	
  secure	
  from	
  a	
  privacy	
  breach	
   42.13	
  
Even	
  though,	
  I	
  have	
  specified	
  my	
  privacy	
  
settings,	
  I	
  am	
  concerned	
  about	
  privacy	
  of	
  my	
  
data	
  
It	
  is	
  a	
  concern,	
  but	
  I	
  still	
  share	
  personal	
  
information	
  
It	
  is	
  a	
  concern;	
  hence	
  I	
  do	
  not	
  share	
  personal	
  
data	
  on	
  OSN	
  
Internet	
  &	
  Social	
  Media
What	
  do	
  you	
  feel	
  about	
  privacy	
  of	
  your	
  personal	
  
information	
  on	
  your	
  OSN?	
  
33
Q42,	
  N	
  =	
  6,855
It	
  is	
  not	
  a	
  concern	
  at	
  all	
   19.30	
  
Since	
  I	
  have	
  specified	
  my	
  privacy	
  settings,	
  my	
  
data	
  is	
  secure	
  from	
  a	
  privacy	
  breach	
   42.13	
  
Even	
  though,	
  I	
  have	
  specified	
  my	
  privacy	
  
settings,	
  I	
  am	
  concerned	
  about	
  privacy	
  of	
  my	
  
data	
   23.84	
  
It	
  is	
  a	
  concern,	
  but	
  I	
  still	
  share	
  personal	
  
information	
   8.02	
  
It	
  is	
  a	
  concern;	
  hence	
  I	
  do	
  not	
  share	
  personal	
  
data	
  on	
  OSN	
   6.71	
  
Internet	
  &	
  Social	
  Media
If	
  you	
  receive	
  a	
  friendship	
  request	
  on	
  your	
  most	
  
frequently	
  used	
  OSN,	
  which	
  of	
  the	
  following	
  people	
  
will	
  you	
  add	
  as	
  friends?	
  
34
Q43,	
  N	
  =	
  6,929
Person	
  of	
  opposite	
  gender
People	
  from	
  my	
  hometown
Person	
  with	
  nice	
  profile	
  picture
Strangers	
  (people	
  you	
  do	
  not	
  
know)
Somebody,	
  whom	
  you	
  do	
  not	
  
know	
  or	
  recognize	
  but	
  have	
  
mutual	
  /	
  common	
  friends	
  with
Anyone
Internet	
  &	
  Social	
  Media
If	
  you	
  receive	
  a	
  friendship	
  request	
  on	
  your	
  most	
  
frequently	
  used	
  OSN,	
  which	
  of	
  the	
  following	
  people	
  
will	
  you	
  add	
  as	
  friends?	
  
35
Q43,	
  N	
  =	
  6,929
Person	
  of	
  opposite	
  gender
People	
  from	
  my	
  hometown
Person	
  with	
  nice	
  profile	
  picture 10.12
Strangers	
  (people	
  you	
  do	
  not	
  
know)
Somebody,	
  whom	
  you	
  do	
  not	
  
know	
  or	
  recognize	
  but	
  have	
  
mutual	
  /	
  common	
  friends	
  with
Anyone
Internet	
  &	
  Social	
  Media
If	
  you	
  receive	
  a	
  friendship	
  request	
  on	
  your	
  most	
  
frequently	
  used	
  OSN,	
  which	
  of	
  the	
  following	
  people	
  
will	
  you	
  add	
  as	
  friends?	
  
36
Q43,	
  N	
  =	
  6,929
Person	
  of	
  opposite	
  gender 27.39
People	
  from	
  my	
  hometown
Person	
  with	
  nice	
  profile	
  picture 10.12
Strangers	
  (people	
  you	
  do	
  not	
  
know)
Somebody,	
  whom	
  you	
  do	
  not	
  
know	
  or	
  recognize	
  but	
  have	
  
mutual	
  /	
  common	
  friends	
  with
Anyone 2.99
Internet	
  &	
  Social	
  Media
If	
  you	
  receive	
  a	
  friendship	
  request	
  on	
  your	
  most	
  
frequently	
  used	
  OSN,	
  which	
  of	
  the	
  following	
  people	
  
will	
  you	
  add	
  as	
  friends?	
  
37
Q43,	
  N	
  =	
  6,929
Person	
  of	
  opposite	
  gender 27.39
People	
  from	
  my	
  hometown 19.51
Person	
  with	
  nice	
  profile	
  picture 10.12
Strangers	
  (people	
  you	
  do	
  not	
  
know) 4.99
Somebody,	
  whom	
  you	
  do	
  not	
  
know	
  or	
  recognize	
  but	
  have	
  
mutual	
  /	
  common	
  friends	
  with 8.31
Anyone 2.99
38
http://precog.iiitd.edu.in/research/privacyindia/
Takeaways
– Online	
  Social	
  Media	
  is	
  a	
  different	
  beast	
  in	
  
terms	
  of	
  privacy,	
  identity,	
  and	
  credibility
-Research	
  /	
  technologies	
  should	
  be	
  developed
– Multiple	
  interesting	
  research,	
  engineering,	
  
and	
  innovation	
  waiting	
  to	
  be	
  done
– Interested	
  in	
  hosting	
  students	
  – B.Tech.,	
  
M.Tech.,	
  Ph.D.
39
40
https://www.facebook.com/PreCog.IIITD/
1 of 40

Recommended

Credibility, Identity Resolution, Privacy, and Policing in Online Social Media by
Credibility, Identity Resolution, Privacy, and Policing in Online Social MediaCredibility, Identity Resolution, Privacy, and Policing in Online Social Media
Credibility, Identity Resolution, Privacy, and Policing in Online Social MediaIIIT Hyderabad
605 views30 slides
Research, Education, and Cybersecurity Policies in India by
Research, Education, and Cybersecurity Policies in India Research, Education, and Cybersecurity Policies in India
Research, Education, and Cybersecurity Policies in India IIIT Hyderabad
635 views32 slides
Credibility, Identity Resolution, and Privacy on Online Social Media by
Credibility, Identity Resolution, and Privacy on Online Social Media Credibility, Identity Resolution, and Privacy on Online Social Media
Credibility, Identity Resolution, and Privacy on Online Social Media IIIT Hyderabad
298 views34 slides
Credibility, Identity Resolution, and Privacy on Online Social Media by
Credibility, Identity Resolution, and Privacy on Online Social Media Credibility, Identity Resolution, and Privacy on Online Social Media
Credibility, Identity Resolution, and Privacy on Online Social Media IIIT Hyderabad
397 views38 slides
2015 pdf-marc smith-node xl-social media sna by
2015 pdf-marc smith-node xl-social media sna2015 pdf-marc smith-node xl-social media sna
2015 pdf-marc smith-node xl-social media snaMarc Smith
11.9K views80 slides
Social listening: how to do it and how to use (SNA Perspective) by
Social listening: how to do it and how to use (SNA Perspective)Social listening: how to do it and how to use (SNA Perspective)
Social listening: how to do it and how to use (SNA Perspective)Toronto Metropolitan University
780 views51 slides

More Related Content

What's hot

Classifying Twitter Content by
Classifying Twitter ContentClassifying Twitter Content
Classifying Twitter ContentStephen Dann
2.1K views32 slides
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar... by
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...Hendrik Speck
8.1K views41 slides
Think Link: Network Insights with No Programming Skills by
Think Link: Network Insights with No Programming SkillsThink Link: Network Insights with No Programming Skills
Think Link: Network Insights with No Programming SkillsMarc Smith
6K views101 slides
Predicting what gets ‘Likes’ on Facebook: case study of BlogTO by
Predicting what gets ‘Likes’ on Facebook:  case study of BlogTOPredicting what gets ‘Likes’ on Facebook:  case study of BlogTO
Predicting what gets ‘Likes’ on Facebook: case study of BlogTOToronto Metropolitan University
1.1K views28 slides
Beyond the MOOC platform: Gaining Insights about Learners from the Social Web by
Beyond the MOOC platform: Gaining Insights about Learners from the Social WebBeyond the MOOC platform: Gaining Insights about Learners from the Social Web
Beyond the MOOC platform: Gaining Insights about Learners from the Social WebGuanliang Chen
421 views25 slides
Condor3 by
Condor3 Condor3
Condor3 Maya Ninova, Ph.D
319 views42 slides

What's hot(20)

Classifying Twitter Content by Stephen Dann
Classifying Twitter ContentClassifying Twitter Content
Classifying Twitter Content
Stephen Dann2.1K views
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar... by Hendrik Speck
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...
Professor Hendrik Speck - Social and Virtual. - An Analysis Framework for Lar...
Hendrik Speck8.1K views
Think Link: Network Insights with No Programming Skills by Marc Smith
Think Link: Network Insights with No Programming SkillsThink Link: Network Insights with No Programming Skills
Think Link: Network Insights with No Programming Skills
Marc Smith6K views
Beyond the MOOC platform: Gaining Insights about Learners from the Social Web by Guanliang Chen
Beyond the MOOC platform: Gaining Insights about Learners from the Social WebBeyond the MOOC platform: Gaining Insights about Learners from the Social Web
Beyond the MOOC platform: Gaining Insights about Learners from the Social Web
Guanliang Chen421 views
Professor Hendrik Speck - Information Mining in the Social Web. Empolis Execu... by Hendrik Speck
Professor Hendrik Speck - Information Mining in the Social Web. Empolis Execu...Professor Hendrik Speck - Information Mining in the Social Web. Empolis Execu...
Professor Hendrik Speck - Information Mining in the Social Web. Empolis Execu...
Hendrik Speck14.3K views
Scholarly Identity 2.0: What does the Web say about your research? by Michael Habib
Scholarly Identity 2.0: What does the Web say about your research?Scholarly Identity 2.0: What does the Web say about your research?
Scholarly Identity 2.0: What does the Web say about your research?
Michael Habib2K views
From Academic Library 2.0 to (Literature) Research 2.0 by Michael Habib
From Academic Library 2.0  to (Literature) Research 2.0From Academic Library 2.0  to (Literature) Research 2.0
From Academic Library 2.0 to (Literature) Research 2.0
Michael Habib2.4K views
Scholarly Reputation Management Online : The Challenges and Opportunities of ... by Michael Habib
Scholarly Reputation Management Online: The Challenges and Opportunities of ...Scholarly Reputation Management Online: The Challenges and Opportunities of ...
Scholarly Reputation Management Online : The Challenges and Opportunities of ...
Michael Habib1.2K views
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA by Marc Smith
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA
Marc Smith2.9K views
20121010 marc smith - mapping collections of connections in social media with... by Marc Smith
20121010 marc smith - mapping collections of connections in social media with...20121010 marc smith - mapping collections of connections in social media with...
20121010 marc smith - mapping collections of connections in social media with...
Marc Smith1.7K views
Prof. Hendrik Speck - Social Network Analysis by Hendrik Speck
Prof. Hendrik Speck - Social Network AnalysisProf. Hendrik Speck - Social Network Analysis
Prof. Hendrik Speck - Social Network Analysis
Hendrik Speck30.4K views
Prof. Hendrik Speck - Privacy and Social Networks by Hendrik Speck
Prof. Hendrik Speck - Privacy and Social NetworksProf. Hendrik Speck - Privacy and Social Networks
Prof. Hendrik Speck - Privacy and Social Networks
Hendrik Speck3.7K views
Introduction to Social Network Analysis by Patti Anklam
Introduction to Social Network AnalysisIntroduction to Social Network Analysis
Introduction to Social Network Analysis
Patti Anklam5.1K views
2010 june - personal democracy forum - marc smith - mapping political socia... by Marc Smith
2010   june - personal democracy forum - marc smith - mapping political socia...2010   june - personal democracy forum - marc smith - mapping political socia...
2010 june - personal democracy forum - marc smith - mapping political socia...
Marc Smith12.5K views
Privacy Concerns and Social Robots by Christoph Lutz
Privacy Concerns and Social Robots Privacy Concerns and Social Robots
Privacy Concerns and Social Robots
Christoph Lutz487 views

Similar to Keynote at 4th International Symposium on Secuirty in Computing at Communications

Privacy in India: Attitudes and Awareness V 2.0 by
Privacy in India: Attitudes and Awareness V 2.0Privacy in India: Attitudes and Awareness V 2.0
Privacy in India: Attitudes and Awareness V 2.0IIIT Hyderabad
1.1K views50 slides
Assessing the available and accessible evidence: How personal reputations are... by
Assessing the available and accessible evidence: How personal reputations are...Assessing the available and accessible evidence: How personal reputations are...
Assessing the available and accessible evidence: How personal reputations are...Frances Ryan
1.1K views21 slides
Conference Report Final 11.18 by
Conference Report Final 11.18Conference Report Final 11.18
Conference Report Final 11.18Nancy J. Brandwein
149 views24 slides
Biomedical Data Science: We Are Not Alone by
Biomedical Data Science: We Are Not AloneBiomedical Data Science: We Are Not Alone
Biomedical Data Science: We Are Not AlonePhilip Bourne
154 views48 slides
CSCW 2016: Beyond the Belmont Principles by
CSCW 2016: Beyond the Belmont PrinciplesCSCW 2016: Beyond the Belmont Principles
CSCW 2016: Beyond the Belmont PrinciplesJessica Vitak
1.1K views22 slides
Privacy and Security in Online Social : Privacy and Pictures on Online Social... by
Privacy and Security in Online Social : Privacy and Pictures on Online Social...Privacy and Security in Online Social : Privacy and Pictures on Online Social...
Privacy and Security in Online Social : Privacy and Pictures on Online Social...IIIT Hyderabad
710 views30 slides

Similar to Keynote at 4th International Symposium on Secuirty in Computing at Communications (20)

Privacy in India: Attitudes and Awareness V 2.0 by IIIT Hyderabad
Privacy in India: Attitudes and Awareness V 2.0Privacy in India: Attitudes and Awareness V 2.0
Privacy in India: Attitudes and Awareness V 2.0
IIIT Hyderabad 1.1K views
Assessing the available and accessible evidence: How personal reputations are... by Frances Ryan
Assessing the available and accessible evidence: How personal reputations are...Assessing the available and accessible evidence: How personal reputations are...
Assessing the available and accessible evidence: How personal reputations are...
Frances Ryan1.1K views
Biomedical Data Science: We Are Not Alone by Philip Bourne
Biomedical Data Science: We Are Not AloneBiomedical Data Science: We Are Not Alone
Biomedical Data Science: We Are Not Alone
Philip Bourne154 views
CSCW 2016: Beyond the Belmont Principles by Jessica Vitak
CSCW 2016: Beyond the Belmont PrinciplesCSCW 2016: Beyond the Belmont Principles
CSCW 2016: Beyond the Belmont Principles
Jessica Vitak1.1K views
Privacy and Security in Online Social : Privacy and Pictures on Online Social... by IIIT Hyderabad
Privacy and Security in Online Social : Privacy and Pictures on Online Social...Privacy and Security in Online Social : Privacy and Pictures on Online Social...
Privacy and Security in Online Social : Privacy and Pictures on Online Social...
IIIT Hyderabad 710 views
Managing and publishing sensitive data in the social sciences - Webinar trans... by ARDC
Managing and publishing sensitive data in the social sciences - Webinar trans...Managing and publishing sensitive data in the social sciences - Webinar trans...
Managing and publishing sensitive data in the social sciences - Webinar trans...
ARDC609 views
Title of Your Research Proposal Student Name Walde by TakishaPeck109
Title of Your Research Proposal Student Name WaldeTitle of Your Research Proposal Student Name Walde
Title of Your Research Proposal Student Name Walde
TakishaPeck1098 views
Personal Identifiability of User Tracking Data | Whitepaper by Alejandro Franceschi
Personal Identifiability of User Tracking Data | WhitepaperPersonal Identifiability of User Tracking Data | Whitepaper
Personal Identifiability of User Tracking Data | Whitepaper
Using Open Science to advance science - advancing open data by Radboud University
Using Open Science to advance science - advancing open data Using Open Science to advance science - advancing open data
Using Open Science to advance science - advancing open data
Radboud University134 views
Survey Methodology for Security and Privacy Researchers by Elissa Redmiles
Survey Methodology for Security and Privacy ResearchersSurvey Methodology for Security and Privacy Researchers
Survey Methodology for Security and Privacy Researchers
Elissa Redmiles597 views
Web for Information and Mental Health Support by Patrick Daniels
Web for Information and Mental Health SupportWeb for Information and Mental Health Support
Web for Information and Mental Health Support
Patrick Daniels559 views
Privacy-preserving Data Mining in Industry (WSDM 2019 Tutorial) by Krishnaram Kenthapadi
Privacy-preserving Data Mining in Industry (WSDM 2019 Tutorial)Privacy-preserving Data Mining in Industry (WSDM 2019 Tutorial)
Privacy-preserving Data Mining in Industry (WSDM 2019 Tutorial)
Grounded, data with a story by InWithForward
Grounded, data with a storyGrounded, data with a story
Grounded, data with a story
InWithForward710 views
Ga + sxsw data visualization from a ux perspective class v.0.5 by Hunter Whitney
Ga + sxsw data visualization from a ux perspective class v.0.5Ga + sxsw data visualization from a ux perspective class v.0.5
Ga + sxsw data visualization from a ux perspective class v.0.5
Hunter Whitney2.6K views
Nikolaou HR Pro Recruitment Conference 2019 by Ioannis Nikolaou
Nikolaou HR Pro Recruitment Conference 2019Nikolaou HR Pro Recruitment Conference 2019
Nikolaou HR Pro Recruitment Conference 2019
Ioannis Nikolaou1.4K views
Types of Polarisation and Their Operationalisation in Digital and Social Medi... by Axel Bruns
Types of Polarisation and Their Operationalisation in Digital and Social Medi...Types of Polarisation and Their Operationalisation in Digital and Social Medi...
Types of Polarisation and Their Operationalisation in Digital and Social Medi...
Axel Bruns269 views

More from IIIT Hyderabad

Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBias by
Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBiasResponsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBias
Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBiasIIIT Hyderabad
107 views56 slides
Identify, Inspect and Intervene Multimodal Fake News by
Identify, Inspect and Intervene Multimodal Fake NewsIdentify, Inspect and Intervene Multimodal Fake News
Identify, Inspect and Intervene Multimodal Fake NewsIIIT Hyderabad
122 views120 slides
#ChatGPT #ResponsibleAI by
#ChatGPT #ResponsibleAI#ChatGPT #ResponsibleAI
#ChatGPT #ResponsibleAIIIIT Hyderabad
332 views21 slides
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafety by
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafetyData Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafety
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafetyIIIT Hyderabad
46 views38 slides
It is our choices, Harry, that show what we truly are, far more than our abil... by
It is our choices, Harry, that show what we truly are, far more than our abil...It is our choices, Harry, that show what we truly are, far more than our abil...
It is our choices, Harry, that show what we truly are, far more than our abil...IIIT Hyderabad
86 views56 slides
Beyond the Surface: A Computational Exploration of Linguistic Ambiguity by
Beyond the Surface: A Computational Exploration of Linguistic AmbiguityBeyond the Surface: A Computational Exploration of Linguistic Ambiguity
Beyond the Surface: A Computational Exploration of Linguistic AmbiguityIIIT Hyderabad
59 views79 slides

More from IIIT Hyderabad (20)

Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBias by IIIT Hyderabad
Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBiasResponsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBias
Responsible & Safe AI: #LegalBias #Inconsistency #BiasinLLMs #MultiModalBias
IIIT Hyderabad 107 views
Identify, Inspect and Intervene Multimodal Fake News by IIIT Hyderabad
Identify, Inspect and Intervene Multimodal Fake NewsIdentify, Inspect and Intervene Multimodal Fake News
Identify, Inspect and Intervene Multimodal Fake News
IIIT Hyderabad 122 views
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafety by IIIT Hyderabad
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafetyData Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafety
Data Science for Social Good: #MentalHealth #CodeMix #LegalNLP #AISafety
IIIT Hyderabad 46 views
It is our choices, Harry, that show what we truly are, far more than our abil... by IIIT Hyderabad
It is our choices, Harry, that show what we truly are, far more than our abil...It is our choices, Harry, that show what we truly are, far more than our abil...
It is our choices, Harry, that show what we truly are, far more than our abil...
IIIT Hyderabad 86 views
Beyond the Surface: A Computational Exploration of Linguistic Ambiguity by IIIT Hyderabad
Beyond the Surface: A Computational Exploration of Linguistic AmbiguityBeyond the Surface: A Computational Exploration of Linguistic Ambiguity
Beyond the Surface: A Computational Exploration of Linguistic Ambiguity
IIIT Hyderabad 59 views
Data Science for Social Good: #LegalNLP #AlgorithmicBias... by IIIT Hyderabad
Data Science for Social Good:                      #LegalNLP #AlgorithmicBias...Data Science for Social Good:                      #LegalNLP #AlgorithmicBias...
Data Science for Social Good: #LegalNLP #AlgorithmicBias...
IIIT Hyderabad 22 views
How to Write a (Good) Research Paper by IIIT Hyderabad
How to Write a (Good) Research Paper How to Write a (Good) Research Paper
How to Write a (Good) Research Paper
IIIT Hyderabad 250 views
Data Science for Social Good: #LegalNLP #AlgorithmicBias by IIIT Hyderabad
Data Science for Social Good: #LegalNLP #AlgorithmicBiasData Science for Social Good: #LegalNLP #AlgorithmicBias
Data Science for Social Good: #LegalNLP #AlgorithmicBias
IIIT Hyderabad 52 views
Social Computing Research in India by IIIT Hyderabad
Social Computing Research in IndiaSocial Computing Research in India
Social Computing Research in India
IIIT Hyderabad 235 views
Modeling Online User Interactions and their Offline effects on Socio-Technica... by IIIT Hyderabad
Modeling Online User Interactions and their Offline effects on Socio-Technica...Modeling Online User Interactions and their Offline effects on Socio-Technica...
Modeling Online User Interactions and their Offline effects on Socio-Technica...
IIIT Hyderabad 119 views
Privacy. Winter School on “Topics in Digital Trust”. IIT Bombay by IIIT Hyderabad
Privacy. Winter School on “Topics in Digital Trust”. IIT BombayPrivacy. Winter School on “Topics in Digital Trust”. IIT Bombay
Privacy. Winter School on “Topics in Digital Trust”. IIT Bombay
IIIT Hyderabad 54 views
It is our choices, Harry, that show what we truly are, far more than our abil... by IIIT Hyderabad
It is our choices, Harry, that show what we truly are, far more than our abil...It is our choices, Harry, that show what we truly are, far more than our abil...
It is our choices, Harry, that show what we truly are, far more than our abil...
IIIT Hyderabad 56 views
It is our choices, Harry, that show what we truly are, far more than our abil... by IIIT Hyderabad
It is our choices, Harry, that show what we truly are, far more than our abil...It is our choices, Harry, that show what we truly are, far more than our abil...
It is our choices, Harry, that show what we truly are, far more than our abil...
IIIT Hyderabad 389 views
Leveraging Social Media for Financial Advice by IIIT Hyderabad
Leveraging Social Media for Financial AdviceLeveraging Social Media for Financial Advice
Leveraging Social Media for Financial Advice
IIIT Hyderabad 96 views
Development of Stress Induction and Detection System to Study its Effect on B... by IIIT Hyderabad
Development of Stress Induction and Detection System to Study its Effect on B...Development of Stress Induction and Detection System to Study its Effect on B...
Development of Stress Induction and Detection System to Study its Effect on B...
IIIT Hyderabad 108 views
A Framework for Automatic Question Answering in Indian Languages by IIIT Hyderabad
A Framework for Automatic Question Answering in Indian LanguagesA Framework for Automatic Question Answering in Indian Languages
A Framework for Automatic Question Answering in Indian Languages
IIIT Hyderabad 191 views
A Framework For Automatic Question Answering in Indian Languages by IIIT Hyderabad
A Framework For Automatic Question Answering in Indian LanguagesA Framework For Automatic Question Answering in Indian Languages
A Framework For Automatic Question Answering in Indian Languages
IIIT Hyderabad 26 views
Exposing, Examining and Intervening Fake News by IIIT Hyderabad
Exposing, Examining and Intervening Fake NewsExposing, Examining and Intervening Fake News
Exposing, Examining and Intervening Fake News
IIIT Hyderabad 98 views

Recently uploaded

Plant Design Report-Oil Refinery.pdf by
Plant Design Report-Oil Refinery.pdfPlant Design Report-Oil Refinery.pdf
Plant Design Report-Oil Refinery.pdfSafeen Yaseen Ja'far
7 views10 slides
SUMIT SQL PROJECT SUPERSTORE 1.pptx by
SUMIT SQL PROJECT SUPERSTORE 1.pptxSUMIT SQL PROJECT SUPERSTORE 1.pptx
SUMIT SQL PROJECT SUPERSTORE 1.pptxSumit Jadhav
22 views26 slides
Design of machine elements-UNIT 3.pptx by
Design of machine elements-UNIT 3.pptxDesign of machine elements-UNIT 3.pptx
Design of machine elements-UNIT 3.pptxgopinathcreddy
34 views31 slides
Pitchbook Repowerlab.pdf by
Pitchbook Repowerlab.pdfPitchbook Repowerlab.pdf
Pitchbook Repowerlab.pdfVictoriaGaleano
5 views12 slides
dummy.pptx by
dummy.pptxdummy.pptx
dummy.pptxJamesLamp
5 views2 slides
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx by
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptxlwang78
165 views19 slides

Recently uploaded(20)

SUMIT SQL PROJECT SUPERSTORE 1.pptx by Sumit Jadhav
SUMIT SQL PROJECT SUPERSTORE 1.pptxSUMIT SQL PROJECT SUPERSTORE 1.pptx
SUMIT SQL PROJECT SUPERSTORE 1.pptx
Sumit Jadhav 22 views
Design of machine elements-UNIT 3.pptx by gopinathcreddy
Design of machine elements-UNIT 3.pptxDesign of machine elements-UNIT 3.pptx
Design of machine elements-UNIT 3.pptx
gopinathcreddy34 views
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx by lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78165 views
Web Dev Session 1.pptx by VedVekhande
Web Dev Session 1.pptxWeb Dev Session 1.pptx
Web Dev Session 1.pptx
VedVekhande13 views
GDSC Mikroskil Members Onboarding 2023.pdf by gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil59 views
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf by AlhamduKure
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdfASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
ASSIGNMENTS ON FUZZY LOGIC IN TRAFFIC FLOW.pdf
AlhamduKure6 views
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... by csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn6 views
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth by Innomantra
BCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for GrowthBCIC - Manufacturing Conclave -  Technology-Driven Manufacturing for Growth
BCIC - Manufacturing Conclave - Technology-Driven Manufacturing for Growth
Innomantra 10 views
Ansari: Practical experiences with an LLM-based Islamic Assistant by M Waleed Kadous
Ansari: Practical experiences with an LLM-based Islamic AssistantAnsari: Practical experiences with an LLM-based Islamic Assistant
Ansari: Practical experiences with an LLM-based Islamic Assistant
M Waleed Kadous7 views
REACTJS.pdf by ArthyR3
REACTJS.pdfREACTJS.pdf
REACTJS.pdf
ArthyR335 views

Keynote at 4th International Symposium on Secuirty in Computing at Communications

  • 1. Privacy  and  Security  in  Online   Social  Media   Keynote  @  SSCC’16   Sept  22,  2016 Ponnurangam  Kumaraguru  (“PK”) Associate  Professor ACM  Distinguished  Speaker fb/ponnurangam.kumaraguru,  @ponguru
  • 2. Who  am  I?   – Associate  Professor,  IIIT-­‐Delhi     – Ph.D.  from  School  of  Computer  Science,     Carnegie  Mellon  University  (CMU)     – Research  interests   -Social  Computing,  Computational  Social  Science,   Complex  Networks  pertaining  to  Human  Behavior,   specifically  in  the  context  of  Security  &  Privacy – Co-­‐ordinate  and  manage  Precog,   precog.iiitd.edu.in – ACM  Distinguished  Speaker   2
  • 4. 4 What  we  dabble  with!  
  • 7. Training  Data – 500  Tweets  per  event – Used  CrowdFlower 7 Event Tweets Users Boston  Marathon  Blasts  (2013) 7,888,374 3,677,531 Typhoon Haiyan /  Yolanda  (2013) 671,918 368,269 Cyclone  Phailin (2013) 76,136 34,776 Washington  Navy yard shootings (2013) 484,609 257,682 Polar  vortex cold wave (2014) 143,959 116,141 Oklahoma  Tornadoes (2013) 809,154 542,049 Total     10,074,150 4,996,448
  • 8. Credibility  Modeling   8 Feature  set   Features (45)   Tweet  meta-­‐data   Number  of  seconds  since  the  tweet;  Source  of  tweet  (mobile  /  web/   etc);  Tweet  contains  geo-­‐coordinates Tweet  content  (simple)   Number  of  characters;  Number  of  words;  Number  of  URLs;  Number  of   hashtags;  Number  of  unique  characters;  Presence  of  stock  symbol;   Presence  of  happy  smiley;  Presence  of  sad  smiley;  Tweet  contains   `via';  Presence  of  colon  symbol Tweet  content  (linguistic)   Presence  of  swear  words;  Presence  of  negative  emotion  words;   Presence  of  positive  emotion  words;  Presence  of  pronouns;  Mention   of  self  words  in  tweet  (I;  my;  mine) Tweet  author   Number  of  followers;  friends;  time  since  the  user  if  on  Twitter;  etc. Tweet  network   Number  of  retweets;  Number  of  mentions;  Tweet  is  a  reply;  Tweet  is  a   retweet Tweet links   WOT  score  for  the  URL;  Ratio  of  likes  /  dislikes  for  a  YouTube  video
  • 11. v
  • 12. Harvard  (1839)  – Harvard  – Harvard  – Harvard  – MIT  – Northwestern  – UIUC  – WUSL  – CMU  (2009)  – IIITD   (2015)         12
  • 14. De-­‐duplicating  audience Social  audience    =  437,632  +  153,000  +  805,097  or  less?? 14
  • 15. Challenges 15 ProfessionalOpinion Dating Heterogeneous  OSNs Personal Degree  of  Details Quality  and  descriptive  personal   And  professional  information Little  personal  information   Descriptive  opinions Attribute  Evolution Time Information  evolved  on  one  but   not  on  other {jainpari,  Bangalore} Registration  with  same   information  on  both  OSNs {paridhij,  New  Delhi}
  • 16. Generic  Identity  Resolution 16 Extract   available  &   discriminative features Candidate   Identities IDENTITY  SEARCH IDENTITY  LINKING Pairwise   Comparisons
  • 17. Heuristic  Identity  Search 17 cerc.iiitd.ac.in Profile Content Self-mention Network Syntactic and Image Search Linking If self-identified / returned by more than one search method No Yes Candidate Identities name, location, username mobile no, post, friends, followers Paridhi  Jain,  Ponnurangam Kumaraguru,  and  Anupam Joshi.  2013.  @I  seek  ‘fb.me’:  Identifying  Users  across  Multiple  Online  Social   Networks.  In  Proceedings  of  the  22nd  International  Conference  on  World  Wide  Web,  WWW  ’13  Companion.  ACM,  New  York,  NY,  USA,   1259-­‐ 1268.  DOI=http://dx.doi.org/10.1145/2487788.2488160    [Honorable  Mention  Award}  
  • 18. Harvard  (1839)  – Harvard  – Harvard  – Harvard  – MIT  – Northwestern  – UIUC  – WUSL  – CMU  (2009)  – IIITD   (2016)         18
  • 19. 19
  • 20. 20 How  many  of  you  have  posted   mobile  numbers  on  Online  Social   Networks? How  many  of  you  have  seen   mobile  numbers  being  posted  on   Online  Social  Networks?
  • 25. Data  statistics – Twitter:  12th  October  2012  – 20th  October  2013 – Facebook:  16th  November  2012  – 20th  April  2013 25 Numbers Category  +91 Category  0 Category  void Total Twitter Facebook Twitter Facebook Twitter Facebook Twitter Facebook Mobile   Numbers 885 2,191 14,909 8,873 25,566 25,294 41,360 36,358 User   profiles 1,074 2,663 17,913 9,028 31,149 25,406 49,817 36,588
  • 26. 26
  • 28. 28 20  Interviews 4  FGDs 10,427  Surveys #privacyindia12  Methodology 18  months!
  • 30. Demographics Gender  (N=  10,232) Male 67.57 Female 32.43 30 Age   (N=10,350) <18 1.54 18-­‐24 21.31 25-­‐29 32.20 30-­‐39 25.90 40-­‐49 14.09 50-­‐64 4.46 65+ 0.50 Age
  • 31. Internet  &  Social  Media What  do  you  feel  about  privacy  of  your  personal   information  on  your  OSN?   31 Q42,  N  =  6,855 It  is  not  a  concern  at  all   Since  I  have  specified  my  privacy  settings,  my   data  is  secure  from  a  privacy  breach   Even  though,  I  have  specified  my  privacy   settings,  I  am  concerned  about  privacy  of  my   data   It  is  a  concern,  but  I  still  share  personal   information   It  is  a  concern;  hence  I  do  not  share  personal   data  on  OSN  
  • 32. Internet  &  Social  Media What  do  you  feel  about  privacy  of  your  personal   information  on  your  OSN?   32 Q42,  N  =  6,855 It  is  not  a  concern  at  all   Since  I  have  specified  my  privacy  settings,  my   data  is  secure  from  a  privacy  breach   42.13   Even  though,  I  have  specified  my  privacy   settings,  I  am  concerned  about  privacy  of  my   data   It  is  a  concern,  but  I  still  share  personal   information   It  is  a  concern;  hence  I  do  not  share  personal   data  on  OSN  
  • 33. Internet  &  Social  Media What  do  you  feel  about  privacy  of  your  personal   information  on  your  OSN?   33 Q42,  N  =  6,855 It  is  not  a  concern  at  all   19.30   Since  I  have  specified  my  privacy  settings,  my   data  is  secure  from  a  privacy  breach   42.13   Even  though,  I  have  specified  my  privacy   settings,  I  am  concerned  about  privacy  of  my   data   23.84   It  is  a  concern,  but  I  still  share  personal   information   8.02   It  is  a  concern;  hence  I  do  not  share  personal   data  on  OSN   6.71  
  • 34. Internet  &  Social  Media If  you  receive  a  friendship  request  on  your  most   frequently  used  OSN,  which  of  the  following  people   will  you  add  as  friends?   34 Q43,  N  =  6,929 Person  of  opposite  gender People  from  my  hometown Person  with  nice  profile  picture Strangers  (people  you  do  not   know) Somebody,  whom  you  do  not   know  or  recognize  but  have   mutual  /  common  friends  with Anyone
  • 35. Internet  &  Social  Media If  you  receive  a  friendship  request  on  your  most   frequently  used  OSN,  which  of  the  following  people   will  you  add  as  friends?   35 Q43,  N  =  6,929 Person  of  opposite  gender People  from  my  hometown Person  with  nice  profile  picture 10.12 Strangers  (people  you  do  not   know) Somebody,  whom  you  do  not   know  or  recognize  but  have   mutual  /  common  friends  with Anyone
  • 36. Internet  &  Social  Media If  you  receive  a  friendship  request  on  your  most   frequently  used  OSN,  which  of  the  following  people   will  you  add  as  friends?   36 Q43,  N  =  6,929 Person  of  opposite  gender 27.39 People  from  my  hometown Person  with  nice  profile  picture 10.12 Strangers  (people  you  do  not   know) Somebody,  whom  you  do  not   know  or  recognize  but  have   mutual  /  common  friends  with Anyone 2.99
  • 37. Internet  &  Social  Media If  you  receive  a  friendship  request  on  your  most   frequently  used  OSN,  which  of  the  following  people   will  you  add  as  friends?   37 Q43,  N  =  6,929 Person  of  opposite  gender 27.39 People  from  my  hometown 19.51 Person  with  nice  profile  picture 10.12 Strangers  (people  you  do  not   know) 4.99 Somebody,  whom  you  do  not   know  or  recognize  but  have   mutual  /  common  friends  with 8.31 Anyone 2.99
  • 39. Takeaways – Online  Social  Media  is  a  different  beast  in   terms  of  privacy,  identity,  and  credibility -Research  /  technologies  should  be  developed – Multiple  interesting  research,  engineering,   and  innovation  waiting  to  be  done – Interested  in  hosting  students  – B.Tech.,   M.Tech.,  Ph.D. 39